Y2S1 XMQs and MS

(Total: 51 marks)

1. P3_2018	Q2 .	7 marks - Y2S1 Regression, correlation and hypothesis testing
2. P3_Sample	Q2 .	6 marks - Y1S4 Correlation
3. P3_Specimen	Q2 .	7 marks - Y1S4 Correlation
4. P31_2019	Q3 .	9 marks - Y2S1 Regression, correlation and hypothesis testing
5. P31_2020	Q2 .	7 marks - Y2S1 Regression, correlation and hypothesis testing
6. P31_2021	Q2 .	6 marks - Y2S1 Regression, correlation and hypothesis testing
7. P31_2022	Q6 .	9 marks - Y2S1 Regression, correlation and hypothesis testing

2. Tessa owns a small clothes shop in a seaside town. She records the weekly and the average weekly temperature, $t^{\circ}C$, for 8 weeks during the summer. The product moment correlation coefficient for these data is -0.915	
 (a) Stating your hypotheses clearly and using a 5% level of significance, tes not the correlation between sales figures and average weekly temperature 	
(b) Suggest a possible reason for this correlation.	(1)
Tessa suggests that a linear regression model could be used to model these of	data.
(c) State, giving a reason, whether or not the correlation coefficient is consi Tessa's suggestion.	istent with
	(1)
(d) State, giving a reason, which variable would be the explanatory variable	e. (1)
Tessa calculated the linear regression equation as $w = 10755 - 171t$	
(e) Give an interpretation of the gradient of this regression equation.	(1)
	(1)
	§
4	J &

Qu 2	Scheme	Marks	AO
(a)	$H_0: \rho = 0$ $H_1: \rho < 0$	B1	2.5
	Critical value: -0.6215 (Allow any cv in range $0.5 < cv < 0.75$)	M1	1.1a
	r < -0.6215 so significant result and there is evidence of a negative	A1	2.2b
	correlation between w and t	(3)	
(b)	e.g. As temperature increases people spend more time on the beach and less		
	time shopping (o.e.)	B1	2.4
		(1) D1	2.4
(c)	Since r is close to -1 , it is consistent with the suggestion	B1 (1)	2.4
(d)	t will be the explanatory variable since sales are likely to depend on the		2.4
	temperature	B1	2.4
	Evenue degree rise in temperature leads to a drep in weakly comings of \$171	(1) B1	3.4
(e)	Every degree rise in temperature leads to a drop in weekly earnings of £171	ы (1)	3.4
		(7 mar	ks)
	Notes		
(a)	B1 for both hypotheses in terms of ρ M1 for the critical value: sight of ± 0.6215 or any cv such that $0.5 < cv < 0.7$		
(b)	 is seen then A0 but may use r o and mention "negative", "correlation/relationship" and at least "w" and "t" B1 for a suitable reason to explain negative correlation using the context giver e.g. "As temperature drops people are more likely to go shopping (than to 	1.	
	 e.g. "As temperature increases people will be outside rather than in shops" A mere description in context of negative correlation is B0 SO e.g. "As temperature increases people don't want to go shopping/buy cloth e.g. "Less clothes needed as temp increases" is B0 	,	
(c)	B1 for a suitable reason e.g. "strong"/"significant"/"near perfect" "correlation" and saying it is consistent with the suggestion. Allow "yes" followed by t		
(d)	 B1 For identifying t and giving a suitable reason. Need idea that "w depends on t" or "w responds to t" or "t affects w" Allow t (temperature) affects the other variable etc Just saying "t is the independent variable" or "t explains change in w" is T N. B. Suggesting causation is B0 e.g. "t causes w to decrease" 		
(e)	B1 for a description that conveys the idea of rate per degree Celsius. Must have 171, condone missing "£" sign.		

2. A meteorologist believes that there is a relationship between the daily mean windspeed, w kn, and the daily mean temperature, t °C. A random sample of 9 consecutive days is taken from past records from a town in the UK in July and the relevant data is given in the table below.

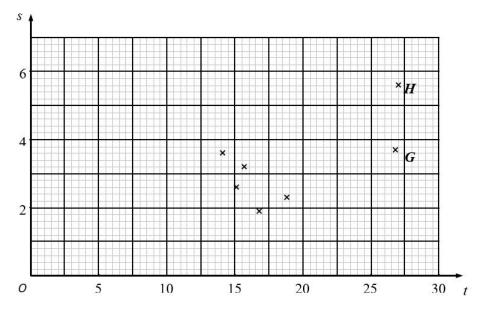
t	13.3	16.2	15.7	16.6	16.3	16.4	19.3	17.1	13.2
w	7	11	8	11	13	8	15	10	11

The meteorologist calculated the product moment correlation coefficient for the 9 days and obtained r = 0.609

- (a) Explain why a linear regression model based on these data is unreliable on a day when the mean temperature is 24 $^{\circ}{\rm C}$
- (b) State what is measured by the product moment correlation coefficient.
- (1)

(1)

DO NOT WRITE IN THIS AREA


(c) Stating your hypotheses clearly test, at the 5% significance level, whether or not the product moment correlation coefficient for the population is greater than zero.

(3)

- Using the same 9 days a location from the large data set gave $\bar{t} = 27.2$ and $\bar{w} = 3.5$
- (d) Using your knowledge of the large data set, suggest, giving your reason, the location that gave rise to these statistics.

Question	Scheme	Marks	AOs
2(a)	e.g. It requires extrapolation so will be unreliable (o.e.)	B1	1.2
		(1)	
(b)	e.g. Linear association between w and t	B1	1.2
		(1)	
(c)	H ₀ : $\rho = 0$ H ₁ : $\rho > 0$	B1	2.5
	Critical value 0.5822	M1	1.1a
	Reject H ₀		
	There is evidence that the product moment correlation coefficient is greater than 0	Al	2.2b
		(3)	
(d)	Higher \overline{t} suggests overseas and not Perthlower wind speed so perhaps not close to the sea so suggest Beijing	B1	2.4
		(1)	
		(6 marks)
Notes:			
(a) B1: for	a correct statement (unreliable) with a suitable reason		
(b)			
B1: for	a correct statement		
(c)			
	both hypotheses in terms of ρ		
	for selecting a suitable 5% critical value compatible with their H_1 for a correct conclusion stated		
	suggesting Beijing with some supporting reason based on t or w ow Jacksonville with a reason based just on higher \overline{t}		

2. A researcher believes that there is a linear relationship between daily mean temperature and daily total rainfall. The 7 places in the northern hemisphere from the large data set are used. The mean of the daily mean temperatures, t °C, and the mean of the daily total rainfall, s mm, for the month of July in 2015 are shown on the scatter diagram below.

(a) With reference to the scatter diagram, explain why a linear regression model may not be suitable for the relationship between *t* and *s*.

The researcher calculated the product moment correlation coefficient for the 7 places and obtained r = 0.658

- (b) Stating your hypotheses clearly, test at the 10% level of significance, whether or not the product moment correlation coefficient for the population is greater than zero.
- (c) Using your knowledge of the large data set, suggest the names of the 2 places labelled *G* and *H*.
- (d) Using your knowledge from the large data set, and with reference to the locations of the 2 places labelled G and H, give a reason why these places have the highest temperatures in July.
- (e) Suggest how you could make better use of the large data set to investigate the relationship between daily mean temperature and daily total rainfall.

(1)

(3)

(1)

(1)

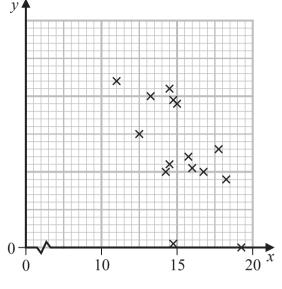
(1)

O NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

9MA0/03 Mock Paper: Statistics and Mechanics mark scheme

Question	Scheme	Marks	AOs
2(a)	Not suitable with a correct reason eg the points do not lie close to a straight line. there appear to be two populations if <i>G</i> and <i>H</i> were removed it appears to be a negative correlation	B1	1.2
		(1)	
(b)	$\mathbf{H}_0: \rho = 0 \mathbf{H}_1: \rho > 0$	B1	2.5
	Critical value 0.5509	M1	1.1a
	Reject H ₀		
	There is evidence that pmcc is greater than zero	A1	2.21
		(3)	
(c)	Beijing and Jacksonville	B1	2.2a
		(1)	
(d)	Beijing and Jacksonville are the closest to the equator	B1	2.4
		(1)	
(e)	Use data from one place.	B1	2.4
		(1)	
	·	(7 n	narks
Notes:			
(a) B1: for a	a correct statement using the data in the table		
(b)B1: for b	both hypotheses in terms of ρ		
	selecting a suitable critical value compatible with their H ₁		
	a correct conclusion stated	.1	
(c) B1: both	Beijing and Jacksonville – they do not need to be attached to G and H	correctly.	


part(c)

Barbara is investigating the relationship between average income (GDP per capita), x US and average annual carbon dioxide (CO ₂) emissions, y tonnes, for different countries.	S dollars,
She takes a random sample of 24 countries and finds the product moment correlation coefficient between average annual CO_2 emissions and average income to be 0.446	
(a) Stating your hypotheses clearly, test, at the 5% level of significance, whether or not the product moment correlation coefficient for all countries is greater than zero.	(3)
Barbara believes that a non-linear model would be a better fit to the data. She codes the data using the coding $m = \log_{10} x$ and $c = \log_{10} y$ and obtains the model $c = -1.82 + 0.89m$	
The product moment correlation coefficient between c and m is found to be 0.882	
(b) Explain how this value supports Barbara's belief.	(1)
(c) Show that the relationship between <i>y</i> and <i>x</i> can be written in the form $y = ax^n$ where <i>a</i> and <i>n</i> are constants to be found.	(5)
	(5)

Question	Scher	me	Marks	AOs		
3 (a)	$H_0: \rho = 0$ $H_1: \rho > 0$	B1	2.5			
	Critical value 0.3438	M1	1.1a			
	(0.446 > 0.3438) so there is evid moment correlation coefficient (is positive correlation	A1	2.2b			
			(3)			
(b)	The value is close(r) to 1 or the correlation	re is strong(er) (positive)	B1	2.4		
			(1)			
(c)	$\log_{10} y = -1.82 + 0.89(\log_{10} x)$	$y = ax^{n} \rightarrow \log_{10} y = \log_{10} (ax^{n})$	M1	1.1b		
	$y = 10^{-1.82 + 0.89(\log_{10} x)}$	$\log_{10} y = \log_{10} a + \log_{10} x^n$	M1	2.1		
	$y = 10^{-1.82} \times 10^{0.89(\log_{10} x)}$	$\log_{10} y = \log_{10} a + n \log_{10} x$	M1	1.1b		
	$[=10^{-1.82} \times 10^{(\log_{10} x)^{0.89}}]$ y = 0.015x ^{0.89}	$[\log_{10} a = -1.82, n = 0.89]$ y = 0.015x ^{0.89}	A1A1	1.1b 1.1b		
			(5)	1.10		
				9 marks)		
		Notes				
(a)	A contradictory statement scores	cant result/ H_0 is rejected on the ba ion/relationship" and "greater than ncome"(o.e.) increases, "CO ₂ /emis A0 e.g. 'Accept H ₀ , therefore pos	sis of <u>seeing</u> 0/positive" ssions"(o.e.) itive correla	(not just increases' tion'		
(b)	B1: for suitable reason e.g. <i>r</i> is cl Do not allow 'association'	ose(r) to 1 or "strong(er)"/"near p	perfect" "co	rrelation"		
		AIO is scored, no further marks	can be awa	rded		
	 For both methods, once an M0 is scored, no further marks can be awarded and condone missing base 10 throughout Method 1: (working to the model) M1: Correct substitution for both <i>c</i> and <i>m</i> (may be implied by 2nd M1 mark) M1: Making <i>y</i> the subject to give an equation in the form y = 10^{a+b(log₁₀x)} (may be implied by 3rd M1 mark) M1: Correct multiplication to give an equation in the form y = 10^a × 10^{b(log₁₀x)} (this line implies M1M1M1 provided no previous incorrect working seen) 					
(c)	Method 2: (working from the mo M1: Taking the log of both sides (i M1: Correct use of addition rule (r M1: Correct multiplication of pow incorrect working seen) A1: $n = 0.89$ or $a = awrt 0.015$ or A1: $n = 0.89$ and $a = awrt 0.015$ do not award the final A1 if answe	may be implied by 2^{nd} M1 mark) nay be implied by 3^{rd} M1 mark) er (this line implies M1M1M1 pr $y = ax^{0.89}$ or $y = awrt0.015x''$ / $y = awrt0.015x^{0.89}$ (dep or	' (dep on M 1 M3)	[3)		

DO NOT WRITE IN THIS AREA

 A random sample of 15 days is taken from the large data set for Perth in June and July 1987. The scatter diagram in Figure 1 displays the values of two of the variables for these 15 days.

(a) Describe the correlation.

The variable on the x-axis is Daily Mean Temperature measured in $^{\circ}$ C.

(b) Using your knowledge of the large data set,

(i) suggest which variable is on the *y*-axis,

(ii) state the units that are used in the large data set for this variable.

Stav believes that there is a correlation between Daily Total Sunshine and Daily Maximum Relative Humidity at Heathrow.

He calculates the product moment correlation coefficient between these two variables for a random sample of 30 days and obtains r = -0.377

- (c) Carry out a suitable test to investigate Stav's belief at a 5% level of significance. State clearly
 - your hypotheses
 - your critical value

On a random day at Heathrow the Daily Maximum Relative Humidity was 97%

(d) Comment on the number of hours of sunshine you would expect on that day, giving a reason for your answer.

(1)

(3)

(1)

(2)

Qu 2	Scheme	Marks	AO			
(a)	Negative	B1	1.2			
(b)(i) (ii)	Rainfall mmorPressure hPa or Pascals or hectopascals or mb or millibars	(1) B1 B1ft	2.2b 1.1b			
(c)	$H_0: \rho = 0 \qquad H_1: \rho \neq 0$	(2) B1	2.5			
	Critical value: $-0.361(0)$ r < -0.3610 so significant result and there is evidence of a correlation between Daily Total <u>Sunshine</u> and Daily Maximum Relative <u>Humidity</u>	M1 A1	1.1b 2.2b			
(d)	Humidity is high and there is evidence of correlation and $r < 0$ So expect amount of sunshine to be <u>lower</u> than the <u>average</u> for Heathrow(oe)	(3) B1 (1)	2.2b			
		(7 mark	s)			
	Notes					
(a)	B1 for stating negative. "Negative skew" is B0 though					
(b)(i) (ii)	B1 for mentioning "rainfall" (allow "rain" or "precipitation") or "pressure" (if more than 1 answer bot NB the other quantitative variable for Perth is: Daily Mean Wind Speed [Not allowed "wind speed" since $r = +0.15$ and in winter might expect w B1ft for giving the correct units. If Daily Mean Wind Speed (kn) or knots "Wind speed" and "knots" would score B0B1 but any other variable score	h must be and scores yind to rais	s B0			
(c)	B1 for both hypotheses correct in terms of ρ M1 for the correct critical value compatible with their H ₁ : allow $\pm 0.361(0)$ If the hypotheses are 1-tail then allow cv of ± 0.3061 e.g. Alternative hypothesis with $r < \pm 0.377$ implies a one-tail test <u>or</u> H ₀ a saying "H ₀ : there is no correlation, H ₁ : there is correlation" is two-tail If there are no hypotheses (or they are nonsensical) assume 2-tail so M1 f	und H1 in w				
	A1 for a correct conclusion in context based on comparing -0.377 with their cv. Condone incorrect inequality e.g. $-0.3610 < -0.377$ as long as they reject H ₀ Do not accept contradictory statements such as "accept H ₀ so there is evidence of" Can say "support for Stav's <u>belief</u> "(o.e.e.g. "claim") or "evidence of a correlation between <u>sunshine</u> and <u>humidity</u> " condone "negative correlation" or comments such as "if humidity is high amount of sunshine will be low"					
(d)	 B1 for stating <u>low</u> amount of sunshine (o. e.) and some reference to r < 0 or f Check for the following 2 features: (i) low sunshine: allow ≤ 5 hrs (LDS mean for 2015 is 5.3, humidity 97% is (ii) negative correlation may be described in words e.g. "high humidity gives <u>or</u> fog (LDS says >95% humidity is foggy) so less 	4.1, ≥97% s low sunsl	,			

2. Marc took a random sample of 16 students from a school and for each student recorded

- the number of letters, *x*, in their last name
- the number of letters, y, in their first name

His results are shown in the scatter diagram on the next page.

(a) Describe the correlation between *x* and *y*.

Marc suggests that parents with long last names tend to give their children shorter first names.

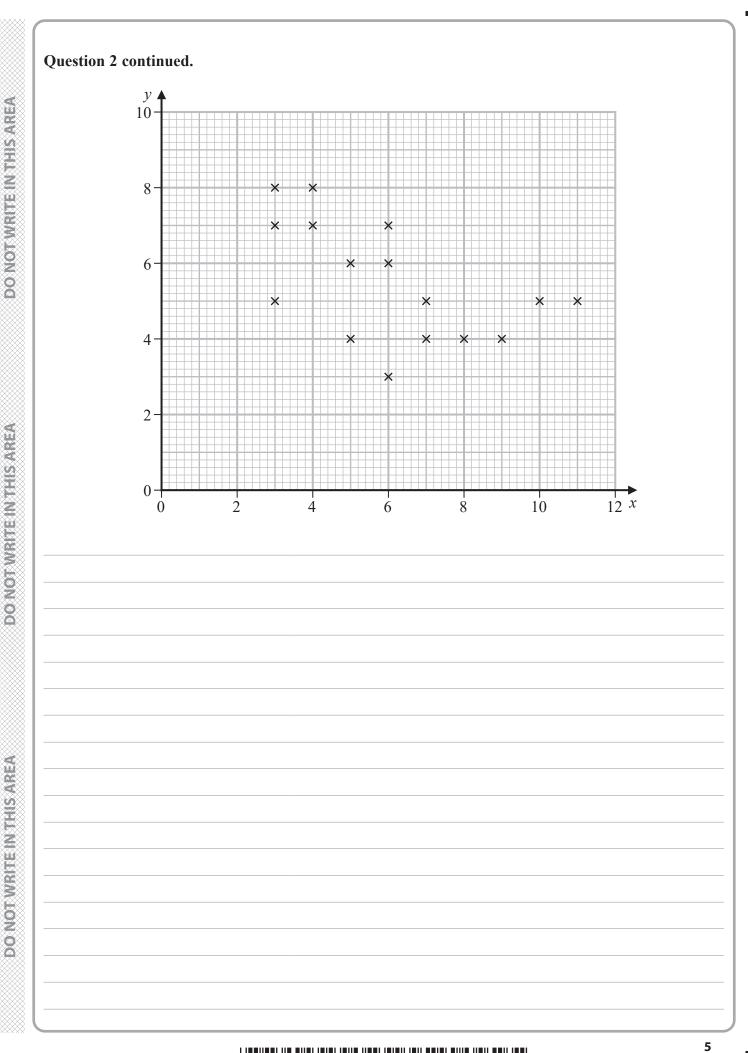
(b) Using the scatter diagram comment on Marc's suggestion, giving a reason for your answer.

(1)

(1)

The results from Marc's random sample of 16 observations are given in the table below.

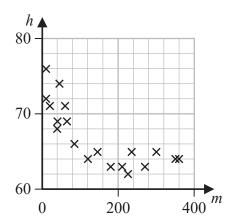
x	3	6	8	7	5	3	11	3	4	5	4	9	7	10	6	6
y	7	7	4	4	6	8	5	5	8	4	7	4	5	5	6	3


- (c) Use your calculator to find the product moment correlation coefficient between *x* and *y* for these data.
- (1)
- (d) Test whether or not there is evidence of a negative correlation between the number of letters in the last name and the number of letters in the first name.

You should

- state your hypotheses clearly
- use a 5% level of significance

(3)



P 6 8 8 2 8 A 0 5 2 0

Qu 2	Scheme	Mar	rks	AO
(a)	Negative	B 1		1.2
(b)	Marc's suggestion is compatible because it's negative correlation		(1)	
(U)	Marc's suggestion <u>is compatible</u> because it's <u>negative correlation</u>	B 1		2.4
			(1)	
(c)	(r =) -0.54458266 awrt <u>-0.545</u>	B1	(1)	1.1b
(d)	$H_0: \rho = 0$ $H_1: \rho < 0$	B 1	(1)	2.5
(1)	$[5\% 1-\text{tail } \text{cv} =] (\underline{+}) \ 0.4259$	M1		1.1a
	(significant result / reject H ₀)			
	There is evidence of negative correlation between the <u>number of letters</u> in $\frac{1}{2}$	A1		2.2b
	(or <u>length</u> of) a student's last <u>name</u> and their first <u>name</u>		(3)	
			(0)	
		(6 n	nark	s)
(a)	Notes B1 for "negative" Allow "slight" or "weak" etc			
(a)	Allow a description e.g. "as x increases y decreases" or in context e.g. "p	eople	with	longer
	last names tend to have shorter first names"			0
	A comment of "negative skew" is B0			
	Need to see distinct or separate responses for (a) and (b)			
(b)	B1 for a comment that suggests data is compatible with the suggestion and a	a suita	ble r	eason
	such as "there is negative correlation" \underline{or} a description in x and y or in co	ntext		
	or the points lie close to a line with <u>negative gradient</u> or draw line $y = x$ and state that <u>more points below the line</u> so <u>supports (or is</u>	comr	oatih	٩
	$\frac{1}{1000}$ with) his suggestion	<u>com</u>	Jano	
	A reason based on just a single point is B0			
	e.g. "11 letters in last name has only 5 in first name"			
(c)	B1 for awrt -0.545			
(d)	B1 for both hypotheses correct in terms of ρ			
	M1 for a critical value compatible with their H ₁ :			
	1-tail: awrt \pm 0.426 (condone \pm 0.425) or 2-tail (B0 scored for H ₁): awr			1
	If hypotheses are in words and can deduce whether one or two-tail then If no hypotheses or their H ₁ is not clearly one or two tail assume one-tail		eir w	ords.
	A1 for compatible signs between cv and r and a correct conclusion in conte		ntion	ing
	correlation and number of letters or length and name (ft their value from			C
	Do NOT award this A mark if contradictory comments or working seen or comparison of 0.426 with significance level of 0.05 etc.	e.g. "	acce	pt H ₀ "
NB	or comparison of 0.426 with significance level of 0.05 etc The M1A1 can be scored independently of the hypotheses			

- 6. Anna is investigating the relationship between exercise and resting heart rate. She takes a random sample of 19 people in her year at school and records for each person
 - their resting heart rate, *h* beats per minute
 - the number of minutes, *m*, spent exercising each week

Her results are shown on the scatter diagram.

(a) Interpret the nature of the relationship between h and m

Anna codes the data using the formulae

$$x = \log_{10} m$$
$$y = \log_{10} h$$

The product moment correlation coefficient between x and y is -0.897

- (b) Test whether or not there is significant evidence of a negative correlation between x and y You should
 - state your hypotheses clearly
 - use a 5% level of significance
 - state the critical value used

The equation of the line of best fit of y on x is

$$y = -0.05x + 1.92$$

(c) Use the equation of the line of best fit of *y* on *x* to find a model for *h* on *m* in the form

 $h = am^k$

where a and k are constants to be found.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(3)

(1)

(5)

Allow there is a negative correlation/association/relationship/exponential between minutes exercise(m) and resting heart rate (h) oeB1Both hypotheses correct in terms of ρ (allow p)M1For the cv of -0.3887 or any cv such that $0.3 < cv < 0.5$ Independent of hypotheses. Correct conclusion that implies reject H ₀ on basis of seeing -0.3887 or if they give 0.3887 we must see the comparison $0.3887 < 0.897$ and which mentions "pmcc/correlation/relationship" and less than 0/ negative or $\rho < 0$ A contradictory statement scores A0 eg Accept H ₀ therefore negative correlation	Que	estion	Sch	heme	Marks	AOs			
(b) $H_{e}: \rho = 0$ B12.5Critical value0.3887 (Allow \pm)M11.1bThere is evidence that the product moment correlation is less than 0/ there is a negative correlationA12.2b(c) $\log_{10} h = -0.05 \log_{10} m + 1.92$ $h = am^{k} \rightarrow \log_{10} h = \log_{10} am^{k}$ M11.1b $\log_{10} h = -\log_{10} m^{0.05} + 1.92$ or $log_{10} h = \log_{10} m^{0.05} + 1.92$ or $log_{10} h = \log_{10} m^{0.05} + 1.92$ or $log_{10} h = 10^{0.20 m^{0.05}} + 1.92$ or $log_{10} h = \frac{10^{0.20 m^{0.05}}}{1.92 \text{ ort}}$ $\log_{10} a + \log_{10} m^{k}$ 2.1 $h = 10^{1.92} \sim 10^{-0.05 \log_{10} m}$ cc $\log_{10} h = \log_{10} a + \log_{10} m^{k}$ M11.1b $h = 10^{1.92} \sim 10^{-0.05 \log_{10} m}$ cc $\log_{10} h = \log_{10} a + k \log_{10} m$ M11.1b $h = 10^{1.92} \sim 10^{-0.05 \log_{10} m^{-0.05}}$ or $h = 33.17 \dots m^{-0.05}$ or $a = a wrt 83.17$ and $k = -0.05$ M11.1b $h = 10^{1.92} \sim 10^{-0.92 m^{-0.05}}$ or $h = 83.17 \dots m^{-0.05}$ or $a = a wrt 83.17$ and $k = -0.05$ A11.1b $m^{0.05} = 10^{-9.2}$ or $m^{-0.05}$ or $h = 83.17 \dots m^{-0.05}$ or $a = a wrt 83.17$ and $k = -0.05$ A11.1b $h = 10^{1.92} \sim 10^{-0.92 m^{-0.05}}$ or $h = 83.17 \dots m^{-0.05}$ or $a = a wrt 83.17$ and $k = -0.05$ A11.1b $h = 10^{1.92} \sim 0.01$ allow negative correlation with no context or $\rho < 0$ A11.1b $h = 10^{1.92} \sim 0.01 allow negative correlation with no context or \rho < 0A11.1bh = 10^{1.92} \sim 0^{-0.03887} or any c such that 0.3 < cv < 0.5Independent of hypotheses. Correct conclusion that implies reject H_0 no basis of secien -0.3887 or if they give 0.3887 or any c such that 0.3 < c$	6	(a)	(<i>h</i>) decreases or the gradient of the curve is becoming	g flatter with increasing <i>m</i> : diminishing	B1	2.4			
InstructionInstructionInstructionCritical value -0.3887 (Allow \pm)M11.1bThere is evidence that the product moment correlation is less than 0/ there is a negative correlationA12.2b(c) $\log_{10} h = -0.05 \log_{10} m + 1.92$ $h = am^k \rightarrow \log_{10} h = \log_{10} am^k$ M11.1b $\log_{10} h = -\log_{10} m^{0.05} + 1.92$ or $\log_{10} h = \log_{10} a + 1.92$ $h = am^k \rightarrow \log_{10} a + \log_{10} m^k$ M11.1b $\log_{10} h = \log_{10} m^{-0.05} + 1.92$ or $\log_{10} h = \log_{10} a + \log_{10} m^k$ M12.1 $h = 10^{1.22-0588a_m}$ M12.1 $h = 10^{1.22-0588a_m}$ oc $\log_{10} h = \log_{10} a + k \log_{10} m$ M11.1b $h = 10^{1.22-0588a_m}$ oc $\log_{10} a + \log_{10} m + k \log_{10} m$ M11.1b $h = 10^{1.22-0788a_m}$ $\log_{10} a = 1.92$ and $k - 0.05$ M11.1b $h = 10^{1.22-0788a_m}$ $\log_{10} a = 1.92$ and $k - 0.05$ M11.1b $h = 10^{1.22-0788a_m}$ $\log_{10} a = 1.92$ and $k = -0.05$ M11.1b $h = 10^{1.22-0788a_m}$ $\log_{10} a = 1.92$ and $k = -0.05$ M11.1b $h = 10^{1.22-0788a_m}$ Oc Oc Oc M11.1b $h = 10^{1.22-078}$ Oc Nc Oc Oc Oc $h = 10^{1.22-078}$ Oc Nc Oc Oc Oc $h = 10^{1.22-078}$ Oc Nc Oc Oc Oc $h = 10^{1.22-078}$ Oc Nc Oc Oc $h = 10^{1.22-078}$ Oc Nc Oc Oc $h = 10^$				(1)					
There is evidence that the product moment correlation is less than 0/ there is a negative correlationA12.2b(c) $\log_{10} h = -0.05 \log_{10} m + 1.92$ $h = am^{k} \rightarrow \log_{10} h = \log_{10} am^{k}$ M11.1b $\log_{10} h = -\log_{10} m^{-0.05} + 1.92$ or $\log_{10} h = \log_{10} a + \log_{10} m^{k}$ M11.1b $\log_{10} h = \log_{10} m^{-0.05} + 1.92$ or $\log_{10} h = \log_{10} a + \log_{10} m^{k}$ M12.1 $h = 10^{1/22} - 0.05 \log_{10} m^{-0.05} + 1.92$ or $\log_{10} (\frac{h}{m^{-0.05}}) = 1.92$ or $\log_{10} (\frac{h}{m^{-0.05}}) = 1.92$ or $\log_{10} (\frac{h}{m^{-0.05}}) = 1.92$ or $h = 10^{1/22} \cdot 0^{-0.05 \log_{10} m}$ ocM11.1b $h = 10^{1/22} \cdot 0^{1.05 \log_{10} m}$ oc $\log_{10} a + k \log_{10} m$ M11.1b $h = 10^{1/22} \cdot 0^{1.05 \log_{10} m}$ oc $\log_{10} a = 1.92$ and $k = -0.05$ M11.1b $h = 10^{1/22} - 0^{-0.05}$ or $h = 83.17 \dots m^{-0.05}$ or $a = a wrt 83.17$ and $k = -0.05$ A11.1b $h = 10^{1/22} m^{-0.05}$ or $h = 83.17 \dots m^{-0.05}$ or $a = a wrt 83.17$ and $k = 0.05$ A11.1b $h = 10^{1/22} m^{-0.05}$ or $h = 83.17 \dots m^{-0.05}$ or $a = a wrt 83.17$ and $k = 0.05$ A11.1b $h = 10^{1/22} m^{-0.05}$ or $h = 83.17 \dots m^{-0.05}$ or $a = a wrt 83.17$ and $k = 0.05$ A11.1b $h = 0^{1/22} m^{-0.05}$ or $h = 83.17 \dots m^{-0.05}$ or $a = a wrt 83.17$ and $k = 0.05$ A11.1b $h = 10^{1/22} w m ws the order correlation with no context or \rho < 0A10.0887 or any correlation with no context or \rho < 0(a)B1Both hypotheses correct in terms of \rho (allow p)M1For the c v of -0.3887 or any cv such that 0.3 < cv < 0.5M1Me$	(b)	$H_0: \rho = 0 H_1: \rho < 0$		B1	2.5			
there is a negative correlationA12.20(c) $\log_{10} h = -0.05 \log_{10} m + 1.92$ $h = am^k \rightarrow \log_{10} h = \log_{10} am^k$ M11.1b $\log_{10} h = -\log_{10} m^{0.05} + 1.92$ or $\log_{10} h = \log_{10} a + \log_{10} m^k$ M11.1b $\log_{10} h = \log_{10} m^{0.05} + 1.92$ or $\log_{10} h = \log_{10} a + \log_{10} m^k$ M12.1 $h = 10^{120-0635m_{m}}$ oc $\log_{10} h = \log_{10} a + \log_{10} m^k$ M12.1 $\log_{10} h m^{0.05} = 1.92$ or $\log_{10} h = \log_{10} a + k \log_{10} m$ M11.1b $h = 10^{120} \times 10^{-055m_{m}}$ oc $\log_{10} h = \log_{10} a + k \log_{10} m$ M11.1b $h = 10^{120} \times 10^{-055m_{m}}$ oc $\log_{10} a = 1.92$ and $k = -0.05$ M11.1b $h = 10^{120} \times 10^{-055m_{m}}$ oc $\log_{10} a = 1.92$ and $k = -0.05$ A11.1b $h = 10^{120} \times 10^{-055}$ or $h = 83.17m^{-0.05}$ or $a = awrt 83.17$ and $k = -0.05$ A11.1b $h = 10^{120} \times 10^{-052m}$ or $h = 83.17m^{-0.05}$ or $a = awrt 83.17$ and $k = -0.05$ A11.1b $h = 10^{120} \times 10^{-052m}$ or $h = 33.17m^{-0.05}$ or $a = awrt 83.17$ and $k = -0.05$ A11.1b $h = 10^{120} \times 10^{-023m}$ or $h = 33.17m^{-0.05}$ or $a = awrt 83.17$ and $k = -0.05$ A11.1b $h = 10^{120} \times 10^{-023m}$ or $h = 33.17m^{-0.05}$ or $a = awrt 83.17$ and $k = -0.05$ A11.1b $h = 10^{120} \times 10^{-023m}$ or $h = 33.17m^{-0.05}$ or $a = awrt 83.17$ and $k = -0.05$ A11.1b $h = 10^{120} \times 10^{-023m}$ or $h = 33.17m^{-0.05}$ or $a = awrt 83.17$ and $k = -0.05$ A11.1b $h = 10^{120} \times 10^{-023}$ or $h = 30^{-23} \times 10^{-23} \times 10^{-23} \times$			Critical value -0.3887 (Allow \pm)		M1	1.1b			
(c) $\log_{10} h = -0.05 \log_{10} m + 1.92$ $h = am^{k} \rightarrow \log_{10} h = \log_{10} am^{k}$ M11.1b $\log_{10} h = -\log_{10} m^{0.05} + 1.92$ or $\log_{10} h = \log_{10} a + \log_{10} m^{k}$ M12.1 $h = 10^{1.92-0.05} \log_{10} m^{-0.05} + 1.92$ or $\log_{10} h = \log_{10} a + \log_{10} m^{k}$ M12.1 $h = 10^{1.92-0.05} \log_{10} m^{-0.05} + 1.92$ or $\log_{10} h m^{0.05} = 1.92$ or $\log_{10} (\frac{h}{m^{-0.05}}) = 1.92$ or $\log_{10} h = \log_{10} a + k \log_{10} m$ M11.1b $h = 10^{1.92} \times 10^{-0.05} \log_{10} m ce$ $\log_{10} h = \log_{10} a + k \log_{10} m$ M11.1b $h = 10^{1.92} \times 10^{-0.05} \log_{10} m ce$ $\log_{10} a = 1.92$ and $k = -0.05$ M11.1b $h = 10^{1.92} \times 10^{-0.05} \log_{10} m^{-0.05} = 10^{1.92} cr\log_{10} a = 1.92 and k = -0.05M11.1bh = 10^{1.92} \times 10^{-0.05} m^{-0.05} = 10^{1.92} cr\log_{10} a = 1.92 and k = -0.05M11.1bh = 10^{1.92} m^{-0.05} or h = 83.17m^{-0.05} or a = a wrt 83.17 and k = -0.05A11.1bh = 10^{1.92} m^{-0.05} or h = 83.17m^{-0.05} or a = a wrt 83.17 and k = -0.05A11.1bh = 10^{1.92} w^{-0.05} or h = 83.17m^{-0.05} or a = a wrt 83.17 and k = -0.05A11.1bh = 10^{1.92} w^{-0.05} or h = 83.17m^{-0.05} or a = a wrt 83.17 and k = -0.05A11.1bh = 10^{1.92} w^{-0.05}h = a a a a a a a a a a a a a a a a a a $			-	oment <u>correlation</u> is <u>less than 0</u> /		2.2b			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					(3)				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	((c)	$\log_{10} h = -0.05 \log_{10} m + 1.92$	$h = am^k \rightarrow \log_{10} h = \log_{10} am^k$	M1	1.1b			
$\begin{array}{ c c c c c c } \begin{tabular}{ c c c c c c c } \label{eq:1} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			$\log_{10} h = \log_{10} m^{-0.05} + 1.92$ or	-10 -10	M1	2.1			
$hm^{0.05} = 10^{1.92}$ or $\frac{h}{m^{-0.05}} = 10^{1.92}$ or $h = 10^{1.92} \times 10^{108} m^{-0.05}$ or $h = 83.17m^{-0.05}$ or $a = awrt 83.17$ and $k = -0.05$ M11.1b $h = 10^{1.92} \times 10^{108} m^{-0.05}$ or $h = 83.17m^{-0.05}$ or $a = awrt 83.17$ and $k = -0.05$ A11.1b $h = 10^{1.92} m^{-0.05}$ or $h = 83.17m^{-0.05}$ or $a = awrt 83.17$ and $k = -0.05$ A11.1b (a) Bt eg Idea as one increases the other decreases (in context). Allow use of m and h eg As m increases h (a) Bteg Idea as one increases the other decreases (in context). Allow use of m and h eg As m increases h (a) BtBoth hypotheses correct interms of ρ (allow p)MIFor the ev of -0.3887 or any ev such that $0.3 < ev < 0.5$ Independent of hypotheses. Correct conclusion that implies reject H_0 on basis of seeing -0.3887 or if they give 0.3887 we must see the comparison $0.3887 < 0.897$ and which mentions "pmcc/correlation/relationship" and less than 0/ negative or $\rho < 0$ At ontradictory statement scores A0 eg Accept H_0 therefore negative correlation(c)In this part once M0 is scored no more marks can be scored. Condone no baseMIMay be implied by 2nd M1 mark Method 1: Correct use of the power log rule or making h the subject Method 2: Correct use of the addition/subtraction log rule or eq^n in the form $h = 10^{1.92} \times 10^{-0.05 \log m}$ Method 2: Log a (or a) and k correctMIMethod 1: Correct removal of logs or $h = 10^{1.92} \times 10^{\log m^{-0.05}}$ MIMethod 1: Correct trace of the addition/subtraction log ruleMIMethod 1: Correct trace of the addition/subtraction log ruleMIMetho			$\log_{10}\left(\frac{h}{m^{-0.05}}\right) = 1.92$ or	$\log_{10} h = \log_{10} a + k \log_{10} m$	M1	1.1b			
Notes: (9 marks)(a)B1eg Idea as one increases the other decreases (in context). Allow use of m and h eg As m increases h decreases. Do not allow negative correlation with no context or $\rho < 0$ Allow there is a negative correlation/association/relationship/exponential between minutes exercise(m) and resting heart rate (h) oe(b)B1Both hypotheses correct in terms of ρ (allow p)M1For the cv of -0.3887 or any cv such that $0.3 < cv < 0.5$ Independent of hypotheses. Correct conclusion that implies reject H ₀ on basis of seeing -0.3887 or if they give 0.3887 we must see the comparison $0.3887 < 0.897$ and which mentions "pmcc/correlation/relationship" and less than 0/ negative or $\rho < 0$ A contradictory statement scores A0 eg Accept H ₀ therefore negative correlation(c)In this part once M0 is scored no more marks can be scored. Condone no baseM1May be implied by 2nd M1 mark Method 1: Correct use of the power log rule or making h the subject Method 2: Correct use of the addition/subtraction log ruleM1Method 1: Correct removal of logs or $h = 10^{1.92} \times 10^{log m^{-0.05}}$ M2Method 1: Correct removal of logs or $h = 10^{1.92} \times 10^$			$hm^{0.05} = 10^{1.92}$ or $\frac{h}{m^{-0.05}} = 10^{1.92}$ or	M1	1.1b				
Notes:(9 marks)(a)B1eg Idea as one increases the other decreases (in context). Allow use of <i>m</i> and <i>h</i> eg As <i>m</i> increases <i>h</i> decreases. Do not allow negative correlation with no context or $\rho < 0$ Allow there is a negative correlation/association/relationship/exponential between minutes exercise(<i>m</i>) and resting heart rate (<i>h</i>) oe(b)B1B0 th hypotheses correct in terms of ρ (allow p)M1For the cv of -0.3887 or any cv such that $0.3 < cv < 0.5$ Independent of hypotheses. Correct conclusion that implies reject H ₀ on basis of seeing -0.3887 or if they give 0.3887 we must see the comparison $0.3887 < 0.897$ and which mentions "pmcc/correlation/relationship" and less than 0/ negative or $\rho < 0$ A1Independent of hypotheses. Correct onclusion that implies reject H ₀ on basis of seeing -0.3887 or if they give 0.3887 we must see the comparison $0.3887 < 0.897$ and which mentions "pmcc/correlation/relationship" and less than 0/ negative or $\rho < 0$ A1A1May be implied by 2nd M1 mark Method 1: Correct substitution for both <i>x</i> and <i>y</i> Method 2: Taking the log of both sidesM1May be implied by 3rd M1 mark Method 1: Correct use of the power log rule or making <i>h</i> the subject Method 2: Correct use of the addition/subtraction log ruleThis line implies M1M1M1 Method 1: Correct use of the addition/subtraction log rule or eq ^a in the form $h = 10^{1.92} \times 10^{-0.05 \log m}$ Method 2: A second correct step for correct use of the power log ruleM1Method 1: Correct removal of logs or $h = 10^{1.92} \times 10^{\log m^{-0.05}}$ Method 2: Log <i>a</i> (or <i>a</i>) and <i>k</i> correctA1Allow $h = awrt 83.2m^{-0.05}$			$h = 10^{1.92} m^{-0.05}$ or $h = 83.17m^{-0.05}$	A1	1.1b				
(a)eg Idea as one increases the other decreases (in context). Allow use of m and h eg As m increases h decreases. Do not allow negative correlation with no context or $\rho < 0$ Allow there is a negative correlation/association/relationship/exponential between minutes exercise(m) and resting heart rate (h) oe(b)B1Both hypotheses correct in terms of ρ (allow p)M1For the cv of -0.3887 or any cv such that $0.3 < cv < 0.5$ Independent of hypotheses. Correct conclusion that implies reject H ₀ on basis of seeing -0.3887 or if they give 0.3887 we must see the comparison $0.3887 < 0.897$ and which mentions "pmcc/correlation/relationship" and less than 0/ negative or $\rho < 0$ A contradictory statement scores A0 eg Accept H ₀ therefore negative correlation(c)In this part once M0 is scored no more marks can be scored. Condone no baseM1May be implied by 2nd M1 mark Method 1: Correct use of the power log rule or making h the subject Method 2: Correct use of the addition/subtraction log ruleM1Method 1: Correct use of the addition/subtraction log rule or eq ⁿ in the form $h = 10^{1.92} \times 10^{-0.05 \log m}$ Method 2: A second correct step for correct use of the power log ruleM1Method 1: Correct removal of logs or $h = 10^{1.92} \times 10^{\log m^{-0.05}}$ Method 2: Log a (or a) and k correctM1Allow $h = awrt 83.2m^{-0.05}$				» .	· · · ·				
(a)B1decreases. Do not allow negative correlation with no context or $\rho < 0$ Allow there is a negative correlation/association/relationship/exponential between minutes exercise(m) and resting heart rate (h) oe(b)B1Both hypotheses correct in terms of ρ (allow p)M1For the cv of -0.3887 or any cv such that $0.3 < cv < 0.5$ A1Independent of hypotheses. Correct conclusion that implies reject H ₀ on basis of seeing -0.3887 or if they give 0.3887 we must see the comparison 0.3887 < 0.897 and which mentions "pmcc/correlation/relationship" and less than 0/ negative or $\rho < 0$ A contradictory statement scores A0 eg Accept H ₀ therefore negative correlation(c)In this part once M0 is scored no more marks can be scored. Condone no baseM1May be implied by 2nd M1 mark Method 1: Correct use of the power log rule or making h the subject Method 2: Correct use of the addition/subtraction log ruleM1Method 1: Correct use of the addition/subtraction log ruleM2This line implies M1M1M1 Method 1: Correct removal of logs or $h = 10^{1.92} \times 10^{log m^{-0.05}}$ M2Allow $h = awrt 83.2m^{-0.05}$			eg Idea as one increases the other decreas			/			
B1Both hypotheses correct in terms of ρ (allow p)M1For the cv of -0.3887 or any cv such that $0.3 < cv < 0.5$ A1Independent of hypotheses. Correct conclusion that implies reject H ₀ on basis of seeing - 0.3887 or if they give 0.3887 we must see the comparison 0.3887 < 0.897 and which mentions "pmcc/correlation/relationship" and less than 0/ negative or $\rho < 0$ A contradictory statement scores A0 eg Accept H ₀ therefore negative correlation(c)In this part once M0 is scored no more marks can be scored. Condone no baseM1May be implied by 2nd M1 mark Method 1: Correct substitution for both x and y Method 2 : Taking the log of both sidesM1May be implied by 3rd M1 mark Method 1: Correct use of the power log rule or making h the subject Method 2 : Correct use of the addition/subtraction log ruleM1Method 1: Correct use of the addition/subtraction log rule or eq ⁿ in the form $h = 10^{1.92} \times 10^{-0.05 log m}$ Method 2: A second correct step for correct use of the power log ruleM1Method 1: Correct removal of logs or $h = 10^{1.92} \times 10^{log m^{-0.05}}$ Method 2: Log a (or a) and k correctA1Allow $h = awrt 83.2m^{-0.05}$	(a)	B1	decreases. Do not allow negative correlati Allow there is a negative correlation/asso	ion with no context or $\rho < 0$					
A1Independent of hypotheses. Correct conclusion that implies reject H_0 on basis of seeing -0.3887 or if they give 0.3887 we must see the comparison 0.3887 < 0.897 and which mentions "pmcc/correlation/relationship" and less than 0/ negative or $\rho < 0$ A contradictory statement scores A0 eg Accept H_0 therefore negative correlation(c)In this part once M0 is scored no more marks can be scored. Condone no baseM1May be implied by 2nd M1 mark 	(b)			allow p)					
A1Independent of hypotheses. Correct conclusion that implies reject H_0 on basis of seeing -0.3887 or if they give 0.3887 we must see the comparison 0.3887 < 0.897 and which mentions "pmcc/correlation/relationship" and less than 0/ negative or $\rho < 0$ A contradictory statement scores A0 eg Accept H_0 therefore negative correlation(c)In this part once M0 is scored no more marks can be scored. Condone no baseM1May be implied by 2nd M1 mark Method 1: Correct substitution for both x and y Method 2 : Taking the log of both sidesM1May be implied by 3rd M1 mark Method 1: Correct use of the power log rule or making h the subject Method 2 : Correct use of the addition/subtraction log ruleM1Method 1: Correct use of the addition/subtraction log rule or eqn in the form $h = 10^{1.92} \times 10^{-0.05 \log m}$ Method 2: A second correct step for correct use of the power log ruleM1Method 1: Correct removal of logs or $h = 10^{1.92} \times 10^{\log m^{-0.05}}$ Method 2: Log a (or a) and k correctM1Allow $h = awrt 83.2m^{-0.05}$. ,	M1	For the $cy of -0.3887$ or any $cy such the$	$ a_1 < a_2 < 0.5$					
M1May be implied by 2nd M1 mark Method 1: Correct substitution for both x and y Method 2 : Taking the log of both sidesM1May be implied by 3rd M1 mark Method 1: Correct use of the power log rule or making h the subject Method 2 : Correct use of the addition/subtraction log ruleM1Method 1: Correct use of the addition/subtraction log rule or eqn in the form $h = 10^{1.92} \times 10^{-0.05 \log m}$ Method 2: A second correct step for correct use of the power log ruleM1Method 1: Correct removal of logs or $h = 10^{1.92} \times 10^{\log m^{-0.05}}$ Method 2: Log a (or a) and k correctA1Allow $h = awrt 83.2m^{-0.05}$		A1	Independent of hypotheses. Correct conclution they give 0.3887 we must see the comparison which mentions "pmcc/correlation/relation/	lusion that implies reject H ₀ on basis of seein ison 0.3887 < 0.897 and onship" and less than 0/ negative or $\rho < 0$	ng – 0.3887	or if			
M1Method 1: Correct substitution for both x and y Method 2 : Taking the log of both sidesMay be implied by 3rd M1 markM1Method 1: Correct use of the power log rule or making h the subject Method 2 : Correct use of the addition/subtraction log ruleM1Method 1: Correct use of the addition/subtraction log rule or eqn in the form $h = 10^{1.92} \times 10^{-0.05 \log m}$ Method 2: A second correct step for correct use of the power log ruleM1Method 1: Correct removal of logs or $h = 10^{1.92} \times 10^{\log m^{-0.05}}$ Method 2: Log a (or a) and k correctA1Allow $h = awrt 83.2m^{-0.05}$	(c)		In this part once M0 is score	d no more marks can be scored. Condone	e no base				
M1Method 1: Correct use of the power log rule or making h the subject Method 2 : Correct use of the addition/subtraction log ruleM1This line implies M1M1M1 Method 1: Correct use of the addition/subtraction log rule or eqn in the form $h = 10^{1.92} \times 10^{-0.05 \log m}$ Method 2: A second correct step for correct use of the power log ruleM1This line implies M1M1M1 Method 1: Correct removal of logs or $h = 10^{1.92} \times 10^{\log m^{-0.05}}$ Method 2: Log a (or a) and k correctA1Allow $h = awrt 83.2m^{-0.05}$		MII	Method 1: Correct substitution for both x	and y Method 2 : Taking the log of both sid	des				
M1Method 1: Correct use of the addition/subtraction log rule or eqn in the form $h = 10^{1.92} \times 10^{-0.05 \log m}$ Method 2: A second correct step for correct use of the power log ruleM1This line implies M1M1M1M1 Method 1: Correct removal of logs or $h = 10^{1.92} \times 10^{\log m^{-0.05}}$ Method 2: Log a (or a) and k correctA1Allow $h = awrt 83.2m^{-0.05}$		M1	Method 1: Correct use of the power log r	e ,					
M1Method 1: Correct removal of logs or $h = 10^{1.92} \times 10^{\log m^{-0.05}}$ Method 2: Log a (or a) and k correctA1Allow $h = awrt 83.2m^{-0.05}$		M1	This line implies M1M1M1 Method 1: Correct use of the addition/subtraction log rule or eq ⁿ in the form $h = 10^{1.92} \times 10^{-0.05 \log m}$						
Method 1: Correct removal of logs or $h = 10^{1.92} \times 10^{\log m}$ Method 2: Log a (or a) and k correctA1Allow $h = awrt 83.2m^{-0.05}$		M1	This line implies M1M1M1M1	·					
				$=10^{1.92} \times 10^{\log m^{-0.05}}$ Method 2: Log <i>a</i> (or <i>a</i>)) and <i>k</i> corr	ect			