Y2P1 XMQs and MS

(Total: 30 marks)

1. P2_Specimen	Q14.	8 marks - Y2P1 Algebraic methods
2. P2_2018	Q11.	7 marks - Y2P1 Algebraic methods
3. P1_2020	Q16.	4 marks - Y2P1 Algebraic methods
4. P1_2021	Q15.	6 marks - Y2P1 Algebraic methods
5. P1_2022	Q7 .	5 marks - Y2P1 Algebraic methods

14. (i) Kayden claims that

$$3^x \geqslant 2^x$$

Determine whether Kayden's claim is always true, sometimes true or never true, justifying your answer.

(2)

(ii) Prove that $\sqrt{3}$	is an irrational	number.
----------------------------	------------------	---------

(6)

Question	Scheme	Marks	AOs
14 (i)	For an explanation or statement to show when the claim $3^x ext{} 2^x$ fails This could be e.g. • when $x = -1$, $\frac{1}{3} < \frac{1}{2}$ or $\frac{1}{3}$ is not greater than or equal to $\frac{1}{2}$ • when $x < 0$, $3^x < 2^x$ or 3^x is not greater than or equal to 2^x	M1	2.3
	followed by an explanation or statement to show when the claim $3^x ext{} 2^x$ is true. This could be e.g. • $x = 2$, 9 4 or 9 is greater than or equal to 4 • when $x ext{} 0$, $3^x ext{} 2^x$ and a correct conclusion. E.g. • so the claim $3^x ext{} 2^x$ is sometimes true	A1	2.4
		(2)	
(ii)	Assume that $\sqrt{3}$ is a rational number So $\sqrt{3} = \frac{p}{q}$, where p and q integers, $q \neq 0$, and the HCF of p and q is 1	M1	2.1
	$\Rightarrow p = \sqrt{3} q \Rightarrow p^2 = 3 q^2$	M1	1.1b
	$\Rightarrow p^2$ is divisible by 3 and so p is divisible by 3	A1	2.2a
	So $p = 3c$, where c is an integer From earlier, $p^2 = 3q^2 \implies (3c)^2 = 3q^2$	M1	2.1
	$\Rightarrow q^2 = 3c^2 \Rightarrow q^2$ is divisible by 3 and so q is divisible by 3	A1	1.1b
	As both p and q are both divisible by 3 then the HCF of p and q is not 1 This contradiction implies that $\sqrt{3}$ is an irrational number	A1	2.4
		(6)	
		(8 n	narks)

Questi	on 14 Notes:
(i)	
M1:	See scheme
A1:	See scheme
(ii)	
M1:	Uses a method of proof by contradiction by initially assuming that $\sqrt{3}$ is rational and expresses
	$\sqrt{3}$ in the form $\frac{p}{q}$, where p and q are correctly defined.
M1:	Writes $\sqrt{3} = \frac{p}{q}$ and rearranges to make p^2 the subject
A1:	Uses a logical argument to prove that <i>p</i> is divisible by 3
M1:	Uses the result that p is divisible by 3, (to construct the initial stage of proving that q is also
	divisible by 3), by substituting $p = 3c$ into their expression for p^2
A1:	Hence uses a correct argument, in the same way as before, to deduce that q is also divisible by 3
A1:	Completes the argument (as detailed on the scheme) that $\sqrt{3}$ is irrational.

Note: All the previous 5 marks need to be scored in order to obtain the final A mark.

11.

$$\frac{1+11x-6x^2}{(x-3)(1-2x)} \equiv A + \frac{B}{(x-3)} + \frac{C}{(1-2x)}$$

(a) Find the values of the constants A, B and C.

(4)

$$f(x) = \frac{1 + 11x - 6x^2}{(x - 3)(1 - 2x)} \qquad x > 3$$

(b) Prove that f(x) is a decreasing function.

(3)

Questi	on	Scheme	Marks	AOs
11		$\frac{1+11x-6x^2}{(x-3)(1-2x)} \equiv A + \frac{B}{(x-3)} + \frac{C}{(1-2x)}$		
(a)		$1+11x-6x^2 \equiv A(1-2x)(x-3) + B(1-2x) + C(x-3) \Rightarrow B =, C =$	M1	2.1
Way	1	A = 3	B1	1.1b
		Uses substitution or compares terms to find either $B =$ or $C =$	M1	1.1b
		B=4 and $C=-2$ which have been found using a correct identity	A1	1.1b
			(4)	
(a) Way 2	2	{long division gives} $\frac{1+11x-6x^2}{(x-3)(1-2x)} = 3 + \frac{-10x+10}{(x-3)(1-2x)}$		
		$-10x+10 \equiv B(1-2x)+C(x-3) \Rightarrow B =, C =$	M1	2.1
		A = 3	B1	1.1b
		Uses substitution or compares terms to find either $B =$ or $C =$	M1	1.1b
		$B = 4$ and $C = -2$ which have been found using $-10x + 10 \equiv B(1 - 2x) + C(x - 3)$	A1	1.1b
			(4)	
(b)		$f(x) = 3 + \frac{4}{(x-3)} - \frac{2}{(1-2x)} \{ = 3 + 4(x-3)^{-1} - 2(1-2x)^{-1} \}; \ x > 3$		
		$f'(x) = -4(x-3)^{-2} - 4(1-2x)^{-2} \left\{ = -\frac{4}{(x-3)^2} - \frac{4}{(1-2x)^2} \right\}$	M1	2.1
		Correct f'(x) and as $(x-3)^2 > 0$ and $(1-2x)^2 > 0$,	A1ft	1.1b
		then $f'(x) = -(+ ve) - (+ ve) < 0$, so $f(x)$ is a decreasing function	A1	2.4
			(3)	marks)
	Notes for Question 11			marks)
(a)		•		
M1:	Way	1: Uses a correct identity $1+11x-6x^2 = A(1-2x)(x-3) + B(1-2x) + C$	(x-3) in a	
	comp	lete method to find values for B and C . Note: Allow one slip in copying	x + 11x - 6	δx^2
		2: Uses a correct identity $-10x+10 \equiv B(1-2x)+C(x-3)$ (which has b		
	long	ng division) in a complete method to find values for B and C		
B1:	A = 3			
M1:	This o	Attempts to find the value of either <i>B</i> or <i>C</i> from their identity This can be achieved by <i>either</i> substituting values into their identity <i>or</i> by comparing coefficients and solving the resulting equations simultaneously		
A1:		e scheme e scheme		
Note:		Way 1: Comparing terms: $x^2: -6 = -2A; x: 11 = 7A - 2B + C; \text{constant}: 1 = -3A + B - 3C$		
	Way	1: Substituting: $x = 3: -20 = -5B \Rightarrow B = 4$; $x = \frac{1}{2}: 5 = -\frac{5}{2}C \Rightarrow C \Rightarrow C = -\frac{5}{2}C \Rightarrow C \Rightarrow C = -\frac{5}{2}C \Rightarrow C \Rightarrow$	-2	
Note:		2: Comparing terms: x : $-10 = -2B + C$; constant: $10 = B - 3C$		
	Way	2: Substituting: $x = 3: -20 = -5B \Rightarrow B = 4; x = \frac{1}{2}: 5 = -\frac{5}{2}C \Rightarrow C \Rightarrow$	-2	

Note:	A=3, B=4, C=-2 from no working scores M1B1M1A1
Note:	The final A1 mark is effectively dependent upon both M marks

Notes for Question 11 Continued		
(a) ctd		
Note:	Writing $1+11x-6x^2 \equiv B(1-2x)+C(x-3) \Rightarrow B=4, C=-2 \text{ will get } 1^{\text{st}} \text{ M0, } 2^{\text{nd}} \text{ M1, } 1^{\text{st}} \text{ A0}$	
Note:	Way 1: You can imply a correct identity $1 + 11x - 6x^2 = A(1 - 2x)(x - 3) + B(1 - 2x) + C(x - 3)$	
	from seeing $\frac{1+11x-6x^2}{(x-3)(1-2x)} \equiv \frac{A(1-2x)(x-3)+B(1-2x)+C(x-3)}{(x-3)(1-2x)}$	
	(x-3)(1-2x) = (x-3)(1-2x)	
Note:	Way 2: You can imply a correct identity $-10x+10 \equiv B(1-2x)+C(x-3)$	
	from seeing $\frac{-10x+10}{(x-3)(1-2x)} \equiv \frac{B(1-2x)+C(x-3)}{(x-3)(1-2x)}$	
(b)		
M1:	Differentiates to give $\{f'(x) = \}$ $\pm \lambda (x-3)^{-2} \pm \mu (1-2x)^{-2}$; λ , $\mu \neq 0$	
A1ft:	$f'(x) = -4(x-3)^{-2} - 4(1-2x)^{-2}$, which can be simplified or un-simplified	
Note:	Allow A1ft for $f'(x) = -(\text{their } B)(x-3)^{-2} + (2)(\text{their } C)(1-2x)^{-2}$; (their B), (their C) $\neq 0$	
A1:	$f'(x) = -4(x-3)^{-2} - 4(1-2x)^{-2}$ or $f'(x) = -\frac{4}{(x-3)^2} - \frac{4}{(1-2x)^2}$ and a correct explanation	
	e.g. $f'(x) = -(+ ve) - (+ ve) < 0$, so $f(x)$ is a decreasing {function}	
Note:	The final A mark can be scored in part (b) from an incorrect $A =$ or from $A = 0$ or no value of	
	A found in part (a)	

Notes for Question 11 Continued - Alternatives				
(a)				
Note:	Be aware of the following alternative solutions, by initially dividing by " $(x-3)$ " or " $(1-2x)$ ")"		
	_			
	$\bullet \frac{1+11x-6x^2}{\text{"}(x-3)\text{"}(1-2x)} \equiv \frac{-6x-7}{(1-2x)} - \frac{20}{(x-3)(1-2x)} \equiv 3 - \frac{10}{(1-2x)} - \frac{20}{(x-3)(1-2x)}$			
	$\frac{20}{(x-3)(1-2x)} \equiv \frac{D}{(x-3)} + \frac{E}{(1-2x)} \implies 20 \equiv D(1-2x) + E(x-3) \implies D = -4, E = -8$			
	$\Rightarrow 3 - \frac{10}{(1 - 2x)} - \left(\frac{-4}{(x - 3)} + \frac{-8}{(1 - 2x)}\right) \equiv 3 + \frac{4}{(x - 3)} - \frac{2}{(1 - 2x)}; A = 3, B = 4, C = -2$			
	$\bullet \frac{1+11x-6x^2}{(x-3)"(1-2x)"} \equiv \frac{3x-4}{(x-3)} + \frac{5}{(x-3)(1-2x)} \equiv 3 + \frac{5}{(x-3)} + \frac{5}{(x-3)(1-2x)}$			
	$\frac{5}{(x-3)(1-2x)} \equiv \frac{D}{(x-3)} + \frac{E}{(1-2x)} \implies 5 \equiv D(1-2x) + E(x-3) \implies D = -1, E = -2$			
	$\Rightarrow 3 + \frac{5}{(x-3)} + \left(\frac{-1}{(x-3)} + \frac{-2}{(1-2x)}\right) \equiv 3 + \frac{4}{(x-3)} - \frac{2}{(1-2x)}; A = 3, B = 4, C = -2$			
(b)				
	Alternative Method 1:			
	$f(x) = \frac{1+11x-6x^2}{(x-3)(1-2x)}, \ x > 3 \implies f(x) = \frac{1+11x-6x^2}{-2x^2+7x-3}; \ \begin{cases} u = 1+11x-6x^2 & v = -2x^2+7x-3 \\ u' = 11-12x & v' = -4x+7 \end{cases}$			
	$f'(x) = \frac{(-2x^2 + 7x - 3)(11 - 12x) - (1 + 11x - 6x^2)(-4x + 7)}{(-2x^2 + 7x - 3)^2}$ Uses quotient rule to find f'(x)	M1		
	$\frac{(-2x^2 + 7x - 3)}{\text{Correct differentiation}}$	A1		
	$f'(x) = \frac{-20((x-1)^2 + 1)}{(-2x^2 + 7x - 3)^2}$ and a correct explanation,	A1		
	e.g. $f'(x) = -\frac{(+ ve)}{(+ ve)} < 0$, so $f(x)$ is a decreasing {function}			
	Alternative Method 2:			
	Allow M1A1A1 for the following solution:			
	Given $f(x) = 3 + \frac{4}{(x-3)} - \frac{2}{(1-2x)} = 3 + \frac{4}{(x-3)} + \frac{2}{(2x-1)}$			
	as $\frac{4}{(x-3)}$ decreases when $x > 3$ and $\frac{2}{(2x-1)}$ decreases when $x > 3$			
	then $f(x)$ is a decreasing {function}			

16. Prove by contradiction that there are no positive integers p and q such that			
$4p^2 - q^2 = 25$			
	(4)		

Question	Scheme	Marks	AOs
16	Sets up the contradiction and factorises: There are positive integers p and q such that $(2p+q)(2p-q)=25$	M1	2.1
	If true then $ 2p+q=25 \qquad 2p+q=5 \\ 2p-q=1 \qquad or \qquad 2p-q=5 $ Award for deducing either of the above statements	M1	2.2a
	Solutions are $p = 6.5, q = 12$ or $p = 2.5, q = 0$ Award for one of these	A1	1.1b
	This is a contradiction as there are no integer solutions hence there are no positive integers p and q such that $4p^2 - q^2 = 25$	A1	2.1
		(4)	
		1	(4 marks)
Notes:			

M1: For the key step in setting up the contradiction and factorising

M1: For deducing that for p and q to be integers then either 2p+q=25 or 2p+q=5 or 2p-q=5 must be true.

Award for deducing either of the above statements.

You can ignore any reference to 2p+q=12p-q=25 as this could not occur for positive p and q.

A1: For correctly solving one of the given statements,

For 2p+q=25 candidates only really need to proceed as far as p=6.5 to show the contradiction.

For 2p+q=5 candidates only really need to find either p or q to show the contradiction.

Alt for 2p+q=5 candidates could state that $2p+q\neq 2p-q$ if p,q are positive integers.

A1: For a complete and rigorous argument with both possibilities and a correct conclusion.

Question	Scheme	Marks	AOs		
16 Alt 1	Sets up the contradiction, attempts to make q^2 or $4p^2$ the subject and states that either $4p^2$ is even(*), or that q^2 (or q) is odd (**) Either There are positive integers p and q such that $4p^2-q^2=25 \Rightarrow q^2=4p^2-25$ with * or ** Or There are positive integers p and q such that $4p^2-q^2=25 \Rightarrow 4p^2=q^2+25$ with * or **	M1	2.1		
	Sets $q = 2n \pm 1$ and expands $(2n \pm 1)^2 = 4p^2 - 25$				
	Proceeds to an expression such as $4p^{2} = 4n^{2} + 4n + 26 = 4(n^{2} + n + 6) + 2$ $4p^{2} = 4n^{2} + 4n + 26 = 4(n^{2} + n) + \frac{13}{2}$ $p^{2} = n^{2} + n + \frac{13}{2}$	A1	1.1b		
	States This is a contradiction as $4p^2$ must be a multiple of 4 Or p^2 must be an integer And concludes there are no positive integers p and q such that $4p^2 - q^2 = 25$	A1	2.1		
		(4)			

Alt 2

An approach using odd and even numbers is unlikely to score marks.

To make this consistent with the Alt method, score

M1: Set up the contradiction and start to consider one of the cases below where q is odd, $m \ne n$. Solutions using the same variable will score no marks.

M1: Set up the contradiction and start to consider BOTH cases below where q is odd, $m \ne n$. No requirement for evens

A1: Correct work and deduction for one of the two scenarios where q is odd

A1: Correct work and deductions for both scenarios where q is odd with a final conclusion

Options	Example of Calculation	Deduction
p (even) q (odd)	$4p^{2}-q^{2} = 4\times(2m)^{2} - (2n+1)^{2} = 16m^{2} - 4n^{2} - 4n - 1$	One less than a multiple of 4 so cannot equal 25
p (odd) q (odd)	$4p^{2}-q^{2} = 4\times(2m+1)^{2} - (2n+1)^{2} = 16m^{2} + 16m - 4n^{2} - 4n + 3$	Three more than a multiple of 4 so cannot equal 25

15. (i) Use proof by exhaustion to show that for $n \in \mathbb{N}$, $n \le 4$ $(n+1)^3 > 3^n$				
(ii) Given that $m^3 + 5$ is odd, use proof by contradiction to show, using algebra, that m	(2)			
is even.	(4)			
	(4)			

Question	Scheme	Marks	AOs	
15(i)	$n=1, 2^3=8, 3^1=3, (8>3)$		2.1	
	$n=2, 3^3=27, 3^2=9, (27>9)$	M1		
	$n = 3, \ 4^3 = 64, \ 3^3 = 27, \ (64 > 27)$ $n = 4, \ 5^3 = 125, \ 3^4 = 81, \ (125 > 81)$			
	So if $n \le 4, n \in \mathbb{N}$ then $(n+1)^3 > 3^n$	A1	2.4	
		(2)		
(ii)	Begins the proof by negating the statement. "Let <i>m</i> be odd " or "Assume <i>m</i> is not even"		2.4	
	Set $m = (2p \pm 1)$ and attempt $m^3 + 5 = (2p \pm 1)^3 + 5 =$	M1	2.1	
	$=8p^3 + 12p^2 + 6p + 6$ AND deduces even	A1	2.2a	
	 Completes proof which requires reason and conclusion reason for 8p³ + 12p² + 6p + 6 being even acceptable statement such as "this is a contradiction so if m³ + 5 is odd then m must be even" 	A1	2.4	
		(4)		
(6)				
	Notes			

(i)

M1: A full and rigorous argument that uses all of n = 1, 2, 3 and 4 in an attempt to prove the given result. Award for attempts at both $(n + 1)^3$ and 3^n for **ALL** values with at least 5 of the 8 values correct.

There is no requirement to compare their sizes, for example state that 27 > 9

Extra values, say n = 0, may be ignored

A1: Completes the proof with no errors and an appropriate/allowable conclusion. This requires

- all the values for n = 1, 2, 3 and 4 correct. Ignore other values
- all pairs compared correctly
- a minimal conclusion. Accept ✓ or hence proven for example

(ii)

M1: Begins the proof by negating the statement. See scheme

This cannot be scored if the candidate attempts m both odd and even

M1: For the key step in setting $m = 2p \pm 1$ and attempting to expand $(2p \pm 1)^3 + 5$

Award for a 4 term cubic expression.

A1: Correctly reaches $(2p + 1)^3 + 5 = 8p^3 + 12p^2 + 6p + 6$ and **states** even.

Alternatively reaches $(2p-1)^3 + 5 = 8p^3 - 12p^2 + 6p + 4$ and **states** even.

A1: A full and complete argument that completes the contradiction proof. See scheme.

(1) **A reason** why the expression $8p^3 + 12p^2 + 6p + 6$ or $8p^3 - 12p^2 + 6p + 4$ is even

Acceptable reasons are

- all terms are even
- sight of a factorised expression E.g. $8p^3 12p^2 + 6p + 4 = 2(4p^3 6p^2 + 3p + 2)$
- (2) Acceptable concluding statement

Acceptable concluding statements are

- "this is a contradiction, so if $m^3 + 5$ is odd then m is even"
- "this is contradiction, so proven."
- "So if $m^3 + 5$ is odd them m is even"

S.C If the candidate misinterprets the demand and does not use proof by contradiction but states a counter example to the statement "if $m^3 + 5$ is odd then m must be even" such as when $m = \sqrt[3]{2}$ then they can score special case mark B1

7. (i) Given that p and q are integers such that

pq is even

use algebra to prove by contradiction that at least one of p or q is even.

(3)

(ii) Given that x and y are integers such that

- x < 0
- $(x+y)^2 < 9x^2 + y^2$

show that y > 4x

(2)

	_		

Question	Scheme	Marks	AOs	
7 (i)	For setting up the contradiction:			
	There exists integers p and q such that pq is even and both p and q are odd	B1	2.5	
	For example, sets $p = 2m+1$ and $q = 2n+1$ and then attempts $pq = (2m+1)(2n+1) =$	M1	1.1b	
	Obtains $pq = (2m+1)(2n+1) = 4mn + 2m + 2n + 1$			
	=2(2mn+m+n)+1	A1* 2.1		
	States that this is odd, giving a contradiction so			
	" if pq is even, then at least one of p and q is even" *			
		(3)		
(ii)				
	$\left(x+y\right)^2 < 9x^2 + y^2 \Rightarrow 2xy < 8x^2$	M1	2.2a	
	States that as			
	$x < 0 \Rightarrow 2y > 8x$	A1*	2.1	
	$\Rightarrow y > 4x *$			
		(2)		

(5 marks)

Notes:

(i)

B1: For using the "correct"/ allowable language in setting up the contradiction. Expect to see a minimum of

- "assume" or "let" or "there is " or other similar words
- "pq is even" and "p and q are (both) odd"

M1: Uses a correct algebraic form for p and q and attempting to multiply.

Allow any correct form so p = 2n + 1 and q = 2m + 3 would be fine to use

Different variables must be used for p and q, so p = 2n + 1 and q = 2n - 1 would be M0

A1*: Full argument.

This requires (1) a correct calculation for their pq

(2) a correct reason and conclusion that it is odd

E.g.
$$(2m+1)(2n+1) = 4mn + 2m + 2n + 1 = 2(2mn + m + n) + 1 = odd$$

E.g.
$$(2m-1)(2n+1) = 4mn + 2m - 2n - 1 = \text{even} + \text{even} - \text{even} - 1 = \text{odd}$$

and (3) a minimal statement implying that they have proven what was required which could be QED, proven etc

Note that B0 M1 A1 is possible

(ii)

M1: For multiplying out and cancelling terms before proceeding to a correct intermediate line such as $2xy < 8x^2$ o.e. such as 2x(4x-y) > 0

A1*: Full and rigorous proof with reason shown as to why inequality reverses. The point at which it reverses must be correct and a correct reason given

See scheme

Alt:
$$2xy < 8x^2 \Rightarrow xy - 4x^2 < 0 \Rightarrow x(y - 4x) < 0$$

as $x < 0$, $(y - 4x) > 0 \Rightarrow y > 4x$ scores M1 A1

So, the following should be scored M1 A0 as line 3 is incorrect

$$2xy - 8x^2 < 0$$

$$\Rightarrow 2xy < 8x^2$$

$$\Rightarrow v < 4x$$

$$\Rightarrow y > 4x \text{ as } x < 0$$

There should be no incorrect lines in their proof