# Y2M8 XMQs and MS

(Total: 104 marks)

| 1.  | P3_2018     | Q6 | 6  | marks | - | Y2M8 | Further | kinematics |
|-----|-------------|----|----|-------|---|------|---------|------------|
| 2.  | P3_2018     | Q8 | 8  | marks | - | Y2M8 | Further | kinematics |
| 3.  | P3_Sample   | Q8 | 10 | marks | - | Y2M8 | Further | kinematics |
| 4.  | P3_Specimen | Q6 | 4  | marks | - | Y2M8 | Further | kinematics |
| 5.  | P3_Specimen | Q7 | 7  | marks | - | Y2M8 | Further | kinematics |
| 6.  | P32_2019    | Q1 | 6  | marks | - | Y2M8 | Further | kinematics |
| 7.  | P32_2019    | Q2 | 8  | marks | - | Y2M8 | Further | kinematics |
| 8.  | P32_2020    | Q2 | 8  | marks | - | Y2M8 | Further | kinematics |
| 9.  | P32_2020    | Q3 | 12 | marks | - | Y2M8 | Further | kinematics |
| 10. | P32_2021    | Q1 | 4  | marks | - | Y2M8 | Further | kinematics |
| 11. | P32_2021    | Q5 | 14 | marks | - | Y2M8 | Further | kinematics |
| 12. | P32_2022    | Q1 | 8  | marks | - | Y2M8 | Further | kinematics |
|     |             |    |    |       |   |      |         |            |

13. P32\_2022 Q3 . 9 marks - Y2M8 Further kinematics

### **SECTION B: MECHANICS**

Unless otherwise stated, whenever a numerical value of g is required, take  $g = 9.8 \,\mathrm{m\,s^{-2}}$  and give your answer to either 2 significant figures or 3 significant figures.

### Answer ALL questions. Write your answers in the spaces provided.

**6.** At time t seconds, where  $t \ge 0$ , a particle P moves in the x-y plane in such a way that its velocity  $\mathbf{v} \, \mathbf{m} \, \mathbf{s}^{-1}$  is given by

$$\mathbf{v} = t^{-\frac{1}{2}}\mathbf{i} - 4t\mathbf{j}$$

When t = 1, P is at the point A and when t = 4, P is at the point B.

Find the exact distance AB.

| 1 | / |
|---|---|

### **Section B: MECHANICS**

| Question | Scheme                                                                                                                                                       | Marks | AOs  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| 6.       | Integrate v w.r.t. time                                                                                                                                      | M1    | 1.1a |
|          | $\mathbf{r} = 2t^{\frac{1}{2}}\mathbf{i} - 2t^{2}\mathbf{j} \ (+ \mathbf{C})$                                                                                | A1    | 1.1b |
|          | Substitute $t = 4$ and $t = 1$ into their $\mathbf{r}$                                                                                                       | M1    | 1.1b |
|          | $t = 4$ , $\mathbf{r} = 4\mathbf{i} - 32\mathbf{j}(+\mathbf{C})$ ; $t = 1$ , $\mathbf{r} = 2\mathbf{i} - 2\mathbf{j}(+\mathbf{C})$ or $(4, -32)$ ; $(2, -2)$ | A1    | 1.1b |
|          | $\sqrt{2^2 + (-30)^2}$                                                                                                                                       | M1    | 1.1b |
|          | $\sqrt{904} = 2\sqrt{226}$                                                                                                                                   | A1    | 1.1b |
|          |                                                                                                                                                              | (6)   |      |

(6 marks)

### Notes: Allow column vectors throughout

**M1:** At least one power increasing by 1.

**A1:** Any correct (unsimplified) expression

**M1:** Must have attempted to integrate **v**. Substitute t = 4 and t = 1 into their **r** to produce 2 vectors (or 2 points if just working with coordinates).

A1:  $4\mathbf{i} - 32\mathbf{j}(+\mathbf{C})$  and  $2\mathbf{i} - 2\mathbf{j}(+\mathbf{C})$  or (4, -32) and (2, -2). These can be seen or implied.

**M1:** Attempt at distance of form  $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$  for their points. Must have 2 non zero terms.

A1:  $\sqrt{904} = 2\sqrt{226}$  or any equivalent surd (exact answer needed)

| 8. | [In this question $\mathbf{i}$ and $\mathbf{j}$ are horizontal unit vectors due east and due north respectively and position vectors are given relative to the fixed point $O$ .]                                                                                                                      |     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | A particle $P$ moves with constant acceleration.<br>At time $t = 0$ , the particle is at $O$ and is moving with velocity $(2\mathbf{i} - 3\mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$<br>At time $t = 2$ seconds, $P$ is at the point $A$ with position vector $(7\mathbf{i} - 10\mathbf{j}) \mathrm{m}$ . |     |
|    | (a) Show that the magnitude of the acceleration of $P$ is $2.5 \mathrm{ms^{-2}}$                                                                                                                                                                                                                       |     |
|    |                                                                                                                                                                                                                                                                                                        | (4) |
|    | At the instant when P leaves the point A, the acceleration of P changes so that P now moves with constant acceleration $(4\mathbf{i} + 8.8\mathbf{j}) \mathrm{m}\mathrm{s}^{-2}$                                                                                                                       |     |
|    | At the instant when $P$ reaches the point $B$ , the direction of motion of $P$ is north east.                                                                                                                                                                                                          |     |
|    | (b) Find the time it takes for P to travel from A to B.                                                                                                                                                                                                                                                |     |
|    |                                                                                                                                                                                                                                                                                                        | (4) |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |
|    |                                                                                                                                                                                                                                                                                                        |     |



| Question | Scheme                                                                                                                                                  | Marks | AOs  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| 8(a)     | Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ : $(7\mathbf{i} - 10\mathbf{j}) = 2(2\mathbf{i} - 3\mathbf{j}) + \frac{1}{2}\mathbf{a}2^2$ | M1    | 3.1b |
|          | $\mathbf{a} = (1.5\mathbf{i} - 2\mathbf{j})$                                                                                                            | A1    | 1.1b |
|          | $ \mathbf{a}  = \sqrt{1.5^2 + (-2)^2}$                                                                                                                  | M1    | 1.1b |
|          | = 2.5 m s <sup>-2</sup> * GIVEN ANSWER                                                                                                                  | A1*   | 2.1  |
|          |                                                                                                                                                         | (4)   |      |
| (b)      | Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t = (2\mathbf{i} - 3\mathbf{j}) + 2(1.5\mathbf{i} - 2\mathbf{j})$                                           | M1    | 3.1b |
|          | $=(5\mathbf{i}-7\mathbf{j})$                                                                                                                            | A1    | 1.1b |
|          | $\mathbf{v} = (5\mathbf{i} - 7\mathbf{j}) + t(4\mathbf{i} + 8.8\mathbf{j}) = (5 + 4t)\mathbf{i} + (8.8t - 7)\mathbf{j}$ and $(5 + 4t) = (8.8t - 7)$     | M1    | 3.1b |
|          | t = 2.5  (s)                                                                                                                                            | A1    | 1.1b |
|          |                                                                                                                                                         | (4)   |      |

(8 marks)

#### Notes: Allow column vectors throughout

(a)

#### No credit for individual component calculations

**M1:** Using a complete method to obtain the acceleration. **N.B.** Equation, in **a** only, could be obtained by two integrations

#### **ALTERNATIVE**

M1: Use velocity at half-time (t = 1) = Average velocity over time period

So at 
$$t = 1$$
,  $\mathbf{v} = \frac{1}{2} (7\mathbf{i} - 10\mathbf{j})$  so  $\mathbf{a} = \frac{1}{2} (7\mathbf{i} - 10\mathbf{j}) - (2\mathbf{i} - 3\mathbf{j})$ 

**N.B.** could see  $(7\mathbf{i} - 10\mathbf{j}) = (4\mathbf{i} - 6\mathbf{j}) + 2\mathbf{a}$  as first line of working

A1: Correct a vector

**M1:** Attempt to find magnitude of their **a** using form  $\sqrt{a^2 + b^2}$ 

A1\*: Correct GIVEN ANSWER obtained correctly

**(b)** 

M1: Using a complete method to obtain the velocity at A e.g.by use of  $\mathbf{v} = \mathbf{u} + \mathbf{a}t$  with t = 2 and  $\mathbf{u} = 2\mathbf{i} - 3\mathbf{j}$  and their  $\mathbf{a}$ 

OR: by use of 
$$\mathbf{s} = \mathbf{v}t - \frac{1}{2}\mathbf{a}t^2$$

OR: by integrating their **a**, with addition of C = 2i - 3j, and putting t = 2

A1: correct vector

**M1:** Complete method to find equation in *t* only

e.g. by using  $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ , with their  $\mathbf{u}$  and equating  $\mathbf{i}$  and  $\mathbf{j}$  components

**OR**: by integrating  $(4\mathbf{i} + 8.8\mathbf{j})$ , with addition of a constant, and equating  $\mathbf{i}$  and  $\mathbf{j}$  components.

**N.B.** Must be equating  $\mathbf{i}$  and  $\mathbf{j}$  components of a velocity vector and must be their velocity at A, to give an equation in t only for this M mark

**A1:** 2.5 (s)

| 8. | [In this question ${\bf i}$ and ${\bf j}$ are horizontal unit vectors due east and due north respectively] | ${f i}$ and ${f j}$ are horizontal unit vectors due east and due north respectively] |  |
|----|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
|    | A radio controlled model boat is placed on the surface of a large pond.                                    |                                                                                      |  |
|    | The boat is modelled as a particle.                                                                        |                                                                                      |  |
|    | At time $t = 0$ , the boat is at the fixed point $O$ and is moving due north with speed 0.6 m s            | 1.                                                                                   |  |
|    | Relative to $O$ , the position vector of the boat at time $t$ seconds is $\mathbf{r}$ metres.              |                                                                                      |  |
|    | At time $t = 15$ , the velocity of the boat is $(10.5\mathbf{i} - 0.9\mathbf{j})$ m s <sup>-1</sup> .      |                                                                                      |  |
|    | The acceleration of the boat is constant.                                                                  |                                                                                      |  |
|    | (a) Show that the acceleration of the boat is $(0.7\mathbf{i} - 0.1\mathbf{j})$ m s <sup>-2</sup> .        |                                                                                      |  |
|    |                                                                                                            | (2)                                                                                  |  |
|    | (b) Find $\mathbf{r}$ in terms of $t$ .                                                                    | (2)                                                                                  |  |
|    | (c) Find the value of t when the boat is north-east of O.                                                  | (2)                                                                                  |  |
|    |                                                                                                            | (3)                                                                                  |  |
|    | (d) Find the value of $t$ when the boat is moving in a north-east direction.                               |                                                                                      |  |
|    |                                                                                                            | (3)                                                                                  |  |
|    |                                                                                                            |                                                                                      |  |
|    |                                                                                                            |                                                                                      |  |
|    |                                                                                                            |                                                                                      |  |
|    |                                                                                                            |                                                                                      |  |
|    |                                                                                                            |                                                                                      |  |
|    |                                                                                                            |                                                                                      |  |
|    |                                                                                                            |                                                                                      |  |
|    |                                                                                                            |                                                                                      |  |
|    |                                                                                                            |                                                                                      |  |
|    |                                                                                                            |                                                                                      |  |
|    |                                                                                                            |                                                                                      |  |
|    |                                                                                                            |                                                                                      |  |
|    |                                                                                                            |                                                                                      |  |
|    |                                                                                                            |                                                                                      |  |
|    |                                                                                                            |                                                                                      |  |
|    |                                                                                                            |                                                                                      |  |
|    |                                                                                                            |                                                                                      |  |
|    |                                                                                                            |                                                                                      |  |

| Question | Scheme                                                                                                            | Marks | AOs  |
|----------|-------------------------------------------------------------------------------------------------------------------|-------|------|
| 8(a)     | Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t : (10.5\mathbf{i} - 0.9\mathbf{j}) = 0.6\mathbf{j} + 15\mathbf{a}$  | M1    | 3.1b |
|          | $\mathbf{a} = (0.7\mathbf{i} - 0.1\mathbf{j}) \text{ m s}^{-2}$ Given answer                                      | A1    | 1.1b |
|          |                                                                                                                   | (2)   |      |
| (b)      | Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$                                                      | M1    | 3.1b |
|          | $\mathbf{r} = 0.6\mathbf{j} \ t + \frac{1}{2}(0.7\mathbf{i} - 0.1\mathbf{j}) \ t^2$                               | A1    | 1.1b |
|          |                                                                                                                   | (2)   |      |
| (c)      | Equating the i and j components of r                                                                              | M1    | 3.1b |
|          | $\frac{1}{2} \leftarrow 0.7 \ t^2 = 0.6 \ t - \frac{1}{2} \leftarrow 0.1 \ t^2$                                   | A1ft  | 1.1b |
|          | t = 1.5                                                                                                           | A1    | 1.1b |
|          |                                                                                                                   | (3)   |      |
| (d)      | Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ : $\mathbf{v} = 0.6\mathbf{j} + (0.7\mathbf{i} - 0.1\mathbf{j}) t$ | M1    | 3.1b |
|          | Equating the i and j components of v                                                                              | M1    | 3.1b |
|          | t = 0.75                                                                                                          | A1 ft | 1.1b |
|          |                                                                                                                   | (3)   |      |

(10 marks)

### **Notes:**

(a)

M1: for use of  $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ 

**A1:** for given answer correctly obtained

**(b)** 

M1: for use of  $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ 

A1: for a correct expression for  $\mathbf{r}$  in terms of t

(c)

M1: for equating the i and j components of their r

**A1ft:** for a correct equation following their **r** 

**A1:** for t = 1.5

(d)

M1: for use of  $\mathbf{v} = \mathbf{u} + \mathbf{a}t$  for a general t

M1: for equating the i and j components of their v

**A1ft:** for t = 0.75, or a correct follow through answer from an incorrect equation

## **SECTION B: MECHANICS**

## Answer ALL questions. Write your answers in the spaces provided.

Unless otherwise indicated, whenever a numerical value of g is required, take  $g = 9.8 \text{ m s}^{-2}$  and give your answer to either 2 significant figures or 3 significant figures.

[In this question position vectors are given relative to a fixed origin O.]

| 6. | A particle, $P$ , moves with constant acceleration $(\mathbf{i} - 2\mathbf{j})$ m s <sup>-2</sup> .                                                                       |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | At time $t = 0$ seconds, the particle is at the point A with position vector $(2\mathbf{i} + 5\mathbf{j})$ m and is moving with velocity $\mathbf{u}$ m s <sup>-1</sup> . |
|    | At time $t = 3$ seconds, P is at the point B with position vector $(-2.5\mathbf{i} + 8\mathbf{j})$ m.                                                                     |

| At time $t = 3$ seconds, $P$ is at the point $B$ with position vector $(-2.5\mathbf{i} + 8\mathbf{j})$ m. |     |  |
|-----------------------------------------------------------------------------------------------------------|-----|--|
| Find <b>u</b> .                                                                                           | (4) |  |
|                                                                                                           |     |  |
|                                                                                                           |     |  |
|                                                                                                           |     |  |
|                                                                                                           |     |  |
|                                                                                                           |     |  |
|                                                                                                           |     |  |
|                                                                                                           |     |  |
|                                                                                                           |     |  |
|                                                                                                           |     |  |
|                                                                                                           |     |  |
|                                                                                                           |     |  |
|                                                                                                           |     |  |
|                                                                                                           |     |  |
|                                                                                                           |     |  |
|                                                                                                           |     |  |
|                                                                                                           |     |  |

## 9MA0/03 Mock Paper: Statistics and Mechanics mark scheme

## 9MA0/03 Mock Paper: Part B Mechanics Mark scheme

| Question | Scheme                                                       | Marks        | AOs  |
|----------|--------------------------------------------------------------|--------------|------|
| 1        | $\mathbf{r} = (-4.5\mathbf{i} + 3\mathbf{j})$                | B1           | 1.1b |
|          | Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ | M1           | 3.1b |
|          | $(-4.5i + 3j) = 3u + 0.5(i - 2j) 3^{2}$                      | A1 <b>ft</b> | 1.1b |
|          | $\mathbf{u} = (-3\mathbf{i} + 4\mathbf{j})$                  | A1           | 1.1b |
|          |                                                              | (4)          |      |

(4 marks)

### **Notes:**

**B1:** Correct displacement vector

M1: Use of correct strategy and/or formula to give equation in **u** only (could be obtained by two integrations)

A1ft: Correct equation in u only, following their displacement vector

A1: Correct answer

| 7. A particle, $P$ , moves under the action of a single force in such a way that at time $t$ seconds, where $t \ge 0$ , its velocity $\mathbf{v}$ m s <sup>-1</sup> is given by |     |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
| $\mathbf{v} = (t^2 - 3t) \mathbf{i} - 12t \mathbf{j}$<br>The mass of P is 0.5 kg.                                                                                               |     |  |  |  |
| Find the time at which the magnitude of the force acting on <i>P</i> is 6.5 N.                                                                                                  |     |  |  |  |
|                                                                                                                                                                                 | (7) |  |  |  |
|                                                                                                                                                                                 | (7) |  |  |  |
|                                                                                                                                                                                 |     |  |  |  |
|                                                                                                                                                                                 |     |  |  |  |
|                                                                                                                                                                                 |     |  |  |  |
|                                                                                                                                                                                 |     |  |  |  |
|                                                                                                                                                                                 |     |  |  |  |
|                                                                                                                                                                                 |     |  |  |  |
|                                                                                                                                                                                 |     |  |  |  |
|                                                                                                                                                                                 |     |  |  |  |
|                                                                                                                                                                                 |     |  |  |  |
|                                                                                                                                                                                 |     |  |  |  |
|                                                                                                                                                                                 |     |  |  |  |
|                                                                                                                                                                                 |     |  |  |  |
|                                                                                                                                                                                 |     |  |  |  |
|                                                                                                                                                                                 |     |  |  |  |
|                                                                                                                                                                                 |     |  |  |  |
|                                                                                                                                                                                 |     |  |  |  |
|                                                                                                                                                                                 |     |  |  |  |
|                                                                                                                                                                                 |     |  |  |  |
|                                                                                                                                                                                 |     |  |  |  |

## 9MA0/03 Mock Paper: Statistics and Mechanics mark scheme

| Question | Scheme                                             | Marks | AOs  |
|----------|----------------------------------------------------|-------|------|
| 2        | Differentiate wrt t                                | M1    | 1.1a |
|          | $\mathbf{a} = (2t - 3) \mathbf{i} - 12 \mathbf{j}$ | A1    | 1.1b |
|          | $(2t-3)^2 + (-12)^2$                               | M1    | 1.1b |
|          | $(2t-3)^2 + (-12)^2 = (6.5 / 0.5)^2$ oe            | M1    | 2.1  |
|          | $4t^2 - 12t - 16 = 0$                              | A1    | 1.1b |
|          | (t-4)(t+1) = 0                                     | M1    | 1.1b |
|          | t=4                                                | A1    | 1.1b |
|          |                                                    | (7)   |      |

(7 marks)

### Notes:

M1: At least one power going down

**A1:** A correct expression

M1: Sum of squares of components (with or without square root) of a or F

M1: Equating magnitude to 6.5/0.5 or 6.5 as appropriate and squaring both sides

**A1:** Correct quadratic = 0 in any form

M1: Attempt to solve a 3 term quadratic

**A1:** 4

## Answer ALL questions. Write your answers in the spaces provided.

1. [In this question position vectors are given relative to a fixed origin O]

At time t seconds, where  $t \ge 0$ , a particle, P, moves so that its velocity  $\mathbf{v} \, \mathbf{m} \, \mathbf{s}^{-1}$  is given by

$$\mathbf{v} = 6t\mathbf{i} - 5t^{\frac{3}{2}}\mathbf{j}$$

When t = 0, the position vector of P is  $(-20\mathbf{i} + 20\mathbf{j})$  m.

(a) Find the acceleration of P when t = 4

**(3)** 

(b) Find the position vector of P when t = 4

**(3)** 

| · |
|---|

## 9MA0-32: Mechanics 1906

## Mark scheme

| Que | stion      | Scheme                                                                                                                                                                      | Marks          | AO   |
|-----|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|
|     |            |                                                                                                                                                                             |                |      |
| 1(  | (a)        | Differentiate v                                                                                                                                                             | M1             | 1.1a |
|     |            | $(\mathbf{a} =)6\mathbf{i} - \frac{15}{2}t^{\frac{1}{2}}\mathbf{j}$                                                                                                         | A1             | 1.1b |
|     |            | $=6\mathbf{i}-15\mathbf{j} \ (\mathrm{m} \ \mathrm{s}^{-2})$                                                                                                                | A1             | 1.1b |
|     |            |                                                                                                                                                                             | (3)            |      |
| 1(  | <b>(b)</b> | Integrate v                                                                                                                                                                 | M1             | 1.1a |
|     |            | $(\mathbf{r} =) (\mathbf{r}_0) + 3t^2 \mathbf{i} - 2t^{\frac{5}{2}} \mathbf{j}$                                                                                             | A1             | 1.1b |
|     |            | = $(-20\mathbf{i} + 20\mathbf{j}) + (48\mathbf{i} - 64\mathbf{j}) = 28\mathbf{i} - 44\mathbf{j}$ (m)                                                                        | A1             | 2.2a |
|     |            |                                                                                                                                                                             | (3)            |      |
|     |            |                                                                                                                                                                             | (6)            |      |
| Ma  | rks        | Notes                                                                                                                                                                       |                |      |
|     |            | <b>N.B.</b> Accept column vectors throughout and condone missing brabut they must be there in final answers                                                                 | ackets in worl | king |
| 1a  | M1         | Use of $\mathbf{a} = \frac{d\mathbf{v}}{dt}$ with attempt to differentiate (both powers decreased) M0 if $\mathbf{i}$ 's and $\mathbf{j}$ 's omitted and they don't recover | asing by 1)    |      |
|     | A1         | Correct differentiation in any form                                                                                                                                         |                |      |
|     | A1         | Correct and simplified.  Ignore subsequent working (ISW) if they go on and find the mag                                                                                     | nitude.        |      |
| 1b  | M1         | Use of $\mathbf{r} = \int \mathbf{v} dt$ with attempt to integrate (both powers increasing M0 if $\mathbf{i}$ 's and $\mathbf{j}$ 's omitted and they don't recover         | ng by 1)       |      |
|     | A1         | Correct integration in any form. Condone $\mathbf{r}_0$ not present                                                                                                         |                |      |
|     | A1         | Correct and simplified.                                                                                                                                                     |                |      |

| 2. | A particle, $P$ , moves with constant acceleration $(2\mathbf{i} - 3\mathbf{j}) \mathrm{m} \mathrm{s}^{-2}$<br>At time $t = 0$ , the particle is at the point $A$ and is moving with velocity $(-\mathbf{i} + 4\mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$<br>At time $t = T$ seconds, $P$ is moving in the direction of vector $(3\mathbf{i} - 4\mathbf{j})$ |     |   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|    | (a) Find the value of <i>T</i> .                                                                                                                                                                                                                                                                                                                          | (4) |   |
|    | At time $t = 4$ seconds, $P$ is at the point $B$ .                                                                                                                                                                                                                                                                                                        |     |   |
|    | (b) Find the distance $AB$ .                                                                                                                                                                                                                                                                                                                              | (4) |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     |   |
|    |                                                                                                                                                                                                                                                                                                                                                           |     | d |

| Qu | estion     | Scheme                                                                                                                                                                                                                                                                                              | Marks     | AO     |
|----|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|
| 2  | 2(a)       | $(\mathbf{v} =)\mathbf{C} + (2\mathbf{i} - 3\mathbf{j})t$                                                                                                                                                                                                                                           | M1        | 3.1a   |
|    |            | $(\mathbf{v} =) (-\mathbf{i} + 4\mathbf{j}) + (2\mathbf{i} - 3\mathbf{j})t$                                                                                                                                                                                                                         | A1        | 1.1b   |
|    |            | $\frac{4-3T}{-1+2T} = \frac{-4}{3}$ oe                                                                                                                                                                                                                                                              | M1        | 3.1a   |
|    |            | T=8                                                                                                                                                                                                                                                                                                 | A1        | 1.1b   |
|    |            |                                                                                                                                                                                                                                                                                                     | (4)       |        |
|    | <b>(b)</b> | $(\mathbf{s} =) \mathbf{C}t + (2\mathbf{i} - 3\mathbf{j}) \frac{1}{2}t^2  (+\mathbf{D})$                                                                                                                                                                                                            | M1        | 3.1a   |
|    |            | $(\mathbf{s} =) \left( -\mathbf{i} + 4\mathbf{j} \right) t + \frac{1}{2} \left( 2\mathbf{i} - 3\mathbf{j} \right) t^2 \ (+\mathbf{D})$                                                                                                                                                              | A1        | 1.1b   |
|    |            | $AB = \sqrt{12^2 + 8^2}$ <b>N.B. Beware you may see 4(2i – 3j) which leads to</b> $\sqrt{(8^2 + 12^2)}$ this is M0A0M0A0.                                                                                                                                                                           | M1        | 3.1a   |
|    |            | $=4\sqrt{13}\left(=14.422051\right)$ (m)                                                                                                                                                                                                                                                            | A1cso     | 1.1b   |
|    |            |                                                                                                                                                                                                                                                                                                     | (4)       |        |
|    |            |                                                                                                                                                                                                                                                                                                     | (8)       |        |
| M  | Iarks      | Notes                                                                                                                                                                                                                                                                                               |           |        |
| 2a | M1         | Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ OR integration to give an expression of the form $\mathbf{C} + (2\mathbf{i} - 3\mathbf{j})t$ , non-zero constant vector  M0 if $\mathbf{u}$ and $\mathbf{a}$ are reversed  Condone use of $\mathbf{a} = (2\mathbf{i} + 3\mathbf{j})$ for this M mark | , where C | is a   |
|    | A1         | Any correct unsimplified expression seen or implied                                                                                                                                                                                                                                                 |           |        |
|    | M1         | Correct use of ratios, using a velocity vector (must be using $\frac{-4}{3}$ ) in $T$ only M0 if they equate $4-3T=-4$ and/or $-1+2T=3$ and therefore M6 divide to produce their equation                                                                                                           |           |        |
|    | A1         | Correct only                                                                                                                                                                                                                                                                                        |           |        |
|    |            | N.B.  (i) Can score the second M1A1 if they get $T = 8$ , using a calculate simultaneous equations, but if answer is wrong, and no equation i M0  (ii) Can score M1A1 M1A1 if they get $T = 8$ , using trial and error get $T = 8$ , can only score max M1A1M0A0                                    | n T only, | second |

|    |               | Use of $\mathbf{s} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ with $\mathbf{a} = (2\mathbf{i} - 3\mathbf{j})$                              |
|----|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 2b | M1            | <b>OR</b> integration to give an expression of the form $\mathbf{C}t + (2\mathbf{i} - 3\mathbf{j})\frac{1}{2}t^2$ , where <b>C</b> is     |
|    |               | their non-zero constant <u>vector</u> from (a)                                                                                            |
|    |               | Condone use of $\mathbf{a} = (2\mathbf{i} + 3\mathbf{j})$ for this M mark                                                                 |
|    |               | <b>OR</b> any other complete method using vector <b>suva</b> t equations                                                                  |
|    | A1            | Correct unsimplified expression seen or implied                                                                                           |
|    | M1            | Use of $t = 4$ in their <b>s</b> (which must be a <b>displacement vector</b> ) and then Pythagoras with the root sign                     |
|    | 1 <b>V1 1</b> | <b>N.B.</b> This M mark can be implied by a correct answer, otherwise we need to see Pythagoras used, with the root sign, for the M mark. |
|    | A1cso         | Any surd form or 14 or better                                                                                                             |

**2.** A particle *P* moves with acceleration  $(4\mathbf{i} - 5\mathbf{j}) \,\mathrm{m}\,\mathrm{s}^{-2}$ 

At time t = 0, P is moving with velocity  $(-2\mathbf{i} + 2\mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-1}$ 

(a) Find the velocity of P at time t = 2 seconds.

**(2)** 

At time t = 0, P passes through the origin O.

At time t = T seconds, where T > 0, the particle P passes through the point A.

The position vector of A is  $(\lambda \mathbf{i} - 4.5\mathbf{j})$ m relative to O, where  $\lambda$  is a constant.

(b) Find the value of *T*.

**(4)** 

(c) Hence find the value of  $\boldsymbol{\lambda}$ 

**(2)** 

| Que  | estion     | Scheme                                                                                                                                                                                                                                   | Marks              | AOs    |
|------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|
| 2    | Z(a)       | Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ or integrate to give: $\mathbf{v} = (-2\mathbf{i} + 2\mathbf{j}) + 2(4\mathbf{i} - 5\mathbf{j})$                                                                                          | M1                 | 3.1a   |
|      |            | $(6\mathbf{i} - 8\mathbf{j}) (m s^{-1})$                                                                                                                                                                                                 | A1                 | 1.1b   |
|      |            |                                                                                                                                                                                                                                          | (2)                |        |
| 2    | <b>(b)</b> | Solve problem through use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ or integration                                                                                                                                        |                    |        |
|      |            | $(M0 \text{ if } \mathbf{u} = 0)$                                                                                                                                                                                                        | M1                 | 3.1a   |
|      |            | Or any other complete method e.g use $\mathbf{v} = \mathbf{u} + \mathbf{a}T$ and $\mathbf{r} = \frac{(\mathbf{u} + \mathbf{v})T}{2}$ :                                                                                                   |                    |        |
|      |            | $-4.5\mathbf{j} = 2t\mathbf{j} - \frac{1}{2}t^2 5\mathbf{j} \qquad (\mathbf{j} \text{ terms only})$                                                                                                                                      | A1                 | 1.1b   |
|      |            | The first two marks could be implied if they go straight to an algebraic equation.                                                                                                                                                       |                    |        |
|      |            | Attempt to equate <b>j</b> components to give equation in <i>T</i> only $(-4.5 = 2T - \frac{5}{2}T^2)$                                                                                                                                   | M1                 | 2.1    |
|      |            | T=1.8                                                                                                                                                                                                                                    | A1                 | 1.1b   |
|      |            |                                                                                                                                                                                                                                          | (4)                |        |
| 2    | Z(c)       | Solve problem by substituting their $T$ value (M0 if $T < 0$ ) into the i component equation to give an equation in $\lambda$ only: $\lambda = -2T + \frac{1}{2}T^2 \times 4$                                                            | M1                 | 3.1a   |
|      |            | $\lambda = 2.9 \text{ or } 2.88 \text{ or } \frac{72}{25} \text{ oe}$                                                                                                                                                                    | A1                 | 1.1b   |
|      |            |                                                                                                                                                                                                                                          | (2)                |        |
| Note | es: Acc    | ept column vectors throughout                                                                                                                                                                                                            | (8 n               | narks) |
| 2a   | M1         | For any complete method to give a <b>v</b> expression with correct no. of term used, so if integrating, must see the initial velocity as the constant. Allow sign errors.                                                                | ns with <i>t</i> = | = 2    |
|      | A1         | Cao isw if they go on to find the speed.                                                                                                                                                                                                 |                    |        |
| 2b   | M1         | For any complete method to give a vector expression for $\mathbf{j}$ component of in $t$ (or $T$ ) only, using $\mathbf{a} = (4\mathbf{i} - 5\mathbf{j})$ , so if integrating, RHS of equation in correct structure.  Allow sign errors. | -                  |        |
|      | A1         | Correct $\mathbf{j}$ vector equation in $t$ or $T$ . Ignore $\mathbf{i}$ terms.                                                                                                                                                          |                    |        |
|      | M1         | Must have earned 1 <sup>st</sup> M mark.                                                                                                                                                                                                 |                    |        |

|    |    | Equate $\mathbf{j}$ components to give equation in $T$ (allow $t$ ) only (no $\mathbf{j}$ 's) which has come from a displacement. Equation must be a 3 term quadratic in $T$ .                                                                                                 |
|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | A1 | cao                                                                                                                                                                                                                                                                            |
| 2c | M1 | Must have earned 1 <sup>st</sup> M mark in (b)<br>Complete method - must have an equation in $\lambda$ only (no <b>i</b> 's) which has come from an appropriate displacement (e.g M0 if $\mathbf{a} = 0$ has been used)<br>Expression for $\lambda$ must be a quadratic in $T$ |
|    | A1 | cao                                                                                                                                                                                                                                                                            |

**3.** (i) At time t seconds, where  $t \ge 0$ , a particle P moves so that its acceleration  $\mathbf{a} \,\mathrm{m} \,\mathrm{s}^{-2}$  is given by

$$\mathbf{a} = (1 - 4t)\mathbf{i} + (3 - t^2)\mathbf{j}$$

At the instant when t = 0, the velocity of P is  $36i \,\mathrm{m \, s^{-1}}$ 

(a) Find the velocity of P when t = 4

**(3)** 

(b) Find the value of t at the instant when P is moving in a direction perpendicular to  $\mathbf{i}$ 

(3)

(ii) At time t seconds, where  $t \ge 0$ , a particle Q moves so that its position vector  $\mathbf{r}$  metres, relative to a fixed origin O, is given by

$$\mathbf{r} = (t^2 - t)\mathbf{i} + 3t\mathbf{j}$$

Find the value of t at the instant when the speed of Q is  $5 \,\mathrm{m\,s^{-1}}$ 

**(6)** 

| Quest          | ion        | Scheme                                                                                                               | Marks        | AOs             |
|----------------|------------|----------------------------------------------------------------------------------------------------------------------|--------------|-----------------|
| 3(i)(a         | a)         | Integrate <b>a</b> wrt <i>t</i> to obtain velocity                                                                   | M1           | 3.4             |
|                |            | $\mathbf{v} = (t - 2t^2)\mathbf{i} + \left(3t - \frac{1}{3}t^3\right)\mathbf{j} \ (+\mathbf{C})$                     | A1           | 1.1b            |
|                |            | $8\mathbf{i} - \frac{28}{3}\mathbf{j} \ (\mathrm{m \ s}^{-1})$                                                       | A1           | 1.1b            |
|                |            |                                                                                                                      | (3)          |                 |
| <b>3(i)</b> (l | <b>o</b> ) | Equate i component of v to zero                                                                                      | M1           | 3.1a            |
|                |            | $t - 2t^2 + 36 = 0$                                                                                                  | A1 <b>ft</b> | 1.1b            |
|                |            | t = 4.5 (ignore an incorrect second solution)                                                                        | A1           | 1.1b            |
|                |            |                                                                                                                      | (3)          |                 |
| 3(ii)          | )          | Differentiate $\mathbf{r}$ wrt to $t$ to obtain velocity                                                             | M1           | 3.4             |
|                |            | $\mathbf{v} = (2t - 1)\mathbf{i} + 3\mathbf{j}$                                                                      | A1           | 1.1b            |
|                |            | Use magnitude to give an equation in t only                                                                          | M1           | 2.1             |
|                |            | $(2t-1)^2 + 3^2 = 5^2$                                                                                               | A1           | 1.1b            |
|                |            | Solve problem by solving this equation for <i>t</i>                                                                  | M1           | 3.1a            |
|                |            | t=2.5                                                                                                                | A1           | 1.1b            |
|                |            |                                                                                                                      | (6)          |                 |
|                |            |                                                                                                                      | (12 n        | narks)          |
| Notes: A       | ccept      | column vectors throughout                                                                                            |              |                 |
| 3(i)(a)        | M1         | At least 3 terms with powers increasing by 1 (but M0 if clearly just                                                 | multiplyin   | g by <i>t</i> ) |
|                | A1         | Correct expression                                                                                                   |              |                 |
|                | A1         | Accept 8i – 9.3j or better. Isw if speed found.                                                                      |              |                 |
| 3(i)(b)        | M1         | Must have an equation in t only (Must have integrated to find a velo                                                 | city vector  | r)              |
|                | A1<br>ft   | Correct equation follow through on their <b>v</b> but must be a 3 term qua                                           | dratic       |                 |
|                | A1         | cao                                                                                                                  |              |                 |
| 3(ii)          | M1         | At least 2 terms with powers decreasing by 1 (but M0 if clearly just                                                 | dividing b   | y <i>t</i> )    |
|                | A1         | Correct expression                                                                                                   |              |                 |
|                | M1         | Use magnitude to give an equation in $t$ only, must have differentiate velocity (M0 if they use $\sqrt{x^2 - y^2}$ ) | ed to find a |                 |

| A1 | Correct equation $\sqrt{(2t-1)^2+3^2}=5$                                                                                                                         |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M1 | Solve a 3 term quadratic for <i>t</i> which has come from differentiating and using a magnitude. This M mark can be implied by a correct answer with no working. |
| A1 | 2.5                                                                                                                                                              |

| 1. | A particle $P$ moves with constant acceleration $(2\mathbf{i} - 3\mathbf{j}) \mathrm{m}\mathrm{s}^{-2}$       |     |
|----|---------------------------------------------------------------------------------------------------------------|-----|
|    | At time $t = 0$ , P is moving with velocity $4i \mathrm{m}\mathrm{s}^{-1}$                                    |     |
|    | (a) Find the velocity of $P$ at time $t = 2$ seconds.                                                         | (2) |
|    | At time $t = 0$ , the position vector of $P$ relative to a fixed origin $O$ is $(\mathbf{i} + \mathbf{j})$ m. |     |
|    | (b) Find the position vector of $P$ relative to $O$ at time $t = 3$ seconds.                                  | (2) |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |
|    |                                                                                                               |     |

| Que  | stion | Scheme                                                                                                                                                        | Marks                            | AOs    |
|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------|
| 1    | (a)   | Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ with $t = 2$ : $\mathbf{v} = 4\mathbf{i} + 2(2\mathbf{i} - 3\mathbf{j})$                                       | M1                               | 3.1a   |
|      |       | <b>OR integration</b> : $\mathbf{v} = (2\mathbf{i} - 3\mathbf{j})t + 4\mathbf{i}$ , with $t = 2$                                                              | 1411                             | J.14   |
|      |       | $\mathbf{v} = 8\mathbf{i} - 6\mathbf{j}$                                                                                                                      | A1                               | 1.1b   |
|      |       |                                                                                                                                                               | (2)                              |        |
| 1    | (b)   | Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ at $t = 3$ :                                                                                     |                                  |        |
|      |       | $\left[ (\mathbf{i} + \mathbf{j}) + \left[ 3 \times 4\mathbf{i} + \frac{1}{2} \times (2\mathbf{i} - 3\mathbf{j}) \times 3^2 \right] \right]$                  |                                  |        |
|      |       | <b>OR</b> : find <b>v</b> at $t = 3$ : $4\mathbf{i} + 3(2\mathbf{i} - 3\mathbf{j}) = (10\mathbf{i} - 9\mathbf{j})$                                            |                                  |        |
|      |       | then use $\mathbf{r} = \frac{1}{2}(\mathbf{u} + \mathbf{v})t$                                                                                                 |                                  |        |
|      |       | $(\mathbf{i} + \mathbf{j}) + \left[\frac{1}{2}\left[4\mathbf{i} + (10\mathbf{i} - 9\mathbf{j})\right] \times 3\right]$                                        | M1                               | 3.1a   |
|      |       | or $\mathbf{r} = \mathbf{v}t - \frac{1}{2}\mathbf{a}t^2$                                                                                                      |                                  |        |
|      |       | $\left[ (\mathbf{i} + \mathbf{j}) + \left[ 3 \times (10\mathbf{i} - 9\mathbf{j}) - \frac{1}{2} \times (2\mathbf{i} - 3\mathbf{j}) \times 3^2 \right] \right]$ |                                  |        |
|      |       | <b>OR integration:</b> $\mathbf{r} = (\mathbf{i} + \mathbf{j}) + \left[ (2\mathbf{i} - 3\mathbf{j}) \frac{1}{2} t^2 + 4t\mathbf{i} \right]$ , with $t = 3$    |                                  |        |
|      |       | $\mathbf{r} = 22\mathbf{i} - 12.5\mathbf{j}$                                                                                                                  | A1                               | 2.2a   |
|      |       |                                                                                                                                                               | (2)                              |        |
|      |       |                                                                                                                                                               | (4 n                             | narks) |
| Note | es: A | ccept column vectors throughout                                                                                                                               |                                  |        |
| 1a   | M1    | Complete method to find <b>v</b> , using <b>ruva</b> t or integration (M0 if <b>i</b> and/or <b>j</b> is missing)                                             |                                  |        |
|      | A1    | Apply isw if they also find the speed                                                                                                                         |                                  |        |
|      |       | Complete method to find the p.v. but this mark can be scored if they                                                                                          | omit $(\mathbf{i} + \mathbf{j})$ |        |

i.e. the M1 is for the expression in the square bracket

**1**b

M1

**A**1

with t = 3

cao

(M0 if **i** and/or **j** is missing)

If they integrate, the M1 is earned once the expression in the square bracket is seen

**5.** At time t seconds, a particle P has velocity  $\mathbf{v} \,\mathbf{m} \,\mathbf{s}^{-1}$ , where

$$\mathbf{v} = 3t^{\frac{1}{2}} \mathbf{i} - 2t \mathbf{j} \qquad t > 0$$

(a) Find the acceleration of P at time t seconds, where t > 0

**(2)** 

(b) Find the value of t at the instant when P is moving in the direction of  $\mathbf{i} - \mathbf{j}$ 

**(3)** 

At time t seconds, where t > 0, the position vector of P, relative to a fixed origin O, is  $\mathbf{r}$  metres.

When t = 1,  $\mathbf{r} = -\mathbf{j}$ 

(c) Find an expression for  $\mathbf{r}$  in terms of t.

(3)

(d) Find the exact distance of P from O at the instant when P is moving with speed  $10\,\mathrm{m\,s^{-1}}$ 

(6)





| 4c B1 B0 if incorrect extras |
|------------------------------|
|------------------------------|

| Qı         | uestion      | Scheme                                                                                                                                    | Marks           | AOs    |
|------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|
|            |              | Allow column vectors throughout this question                                                                                             |                 |        |
|            | 5(a)         | Differentiate v wrt t                                                                                                                     | M1              | 3.1a   |
|            |              | $\frac{3}{2}t^{-\frac{1}{2}}\mathbf{i} - 2\mathbf{j} \text{ isw}$                                                                         | A1              | 1.1b   |
|            |              |                                                                                                                                           | (2)             |        |
|            | <b>5(b)</b>  | $3t^{\frac{1}{2}}=2t$                                                                                                                     | M1              | 2.1    |
|            |              | Solve for <i>t</i>                                                                                                                        | DM1             | 1.1b   |
|            |              | $t = \frac{9}{4}$                                                                                                                         | A1              | 1.1b   |
|            |              |                                                                                                                                           | (3)             |        |
|            | <b>5</b> (c) | Integrate <b>v</b> wrt <i>t</i>                                                                                                           | M1 3.1a A1 1.1b |        |
|            |              | $\mathbf{r} = 2t^{\frac{3}{2}}\mathbf{i} - t^2\mathbf{j}(+\mathbf{C})$                                                                    | A1              | 1.1b   |
|            |              | $t=1$ , $\mathbf{r}=-\mathbf{j} \Rightarrow \mathbf{C}=-2\mathbf{i}$ so $\mathbf{r}=2t^{\frac{3}{2}}\mathbf{i}-t^2\mathbf{j}-2\mathbf{i}$ | A1              | 2.2a   |
|            |              |                                                                                                                                           | (3)             |        |
|            | <b>5(d)</b>  | $\sqrt{(3t^{\frac{1}{2}})^2 + (2t)^2} = 10$ or $(3t^{\frac{1}{2}})^2 + (2t)^2 = 10^2$                                                     | M1              | 2.1    |
|            |              | $9t + 4t^2 = 100$                                                                                                                         | M(A)1           | 1.1b   |
|            |              | t=4                                                                                                                                       | A1              | 1.1b   |
|            |              | $\mathbf{r} = 14\mathbf{i} - 16\mathbf{j}$                                                                                                | M1              | 1.1b   |
|            |              | $\sqrt{14^2 + (-16)^2}$                                                                                                                   | M1              | 3.1a   |
|            |              | $ \frac{\sqrt{14^2 + (-16)^2}}{\sqrt{452} (2\sqrt{113}) (m)} $                                                                            | A1              | 1.1b   |
|            |              |                                                                                                                                           | (6)             |        |
|            |              |                                                                                                                                           | (14 n           | narks) |
| Not        | es:          |                                                                                                                                           |                 |        |
| 5a         | M1           | Both powers decreasing by 1 (M0 if vector(s) disappear but allow                                                                          | recovery)       |        |
|            | A1           | cao                                                                                                                                       |                 |        |
| <b>5</b> b | M1           | Complete method, using $\mathbf{v}$ , to obtain an equation in $t$ only, allow a s                                                        | ign error       |        |
|            | DM1          | Dependent on M1, solve for t                                                                                                              |                 |        |

|    | A1    | cao                                                                      |
|----|-------|--------------------------------------------------------------------------|
| 5c | M1    | Both powers increasing by 1 (M0 if vectors disappear but allow recovery) |
|    | A1    | Correct expression without C                                             |
|    | A1    | cao                                                                      |
| 5d | M1    | Use of Pythagoras on $\mathbf{v}$ and 10 to set up equation in $t$       |
|    | M(A)1 | Correct 3 term quadratic in t                                            |
|    | A1    | cao                                                                      |
|    | M1    | Substitute their numerical $t$ value into their $\mathbf{r}$             |
|    | M1    | Use of Pythagoras to find the magnitude of their <b>r</b>                |
|    | A1    | cso                                                                      |

1. [In this question, position vectors are given relative to a fixed origin.]

At time t seconds, where t > 0, a particle P has velocity  $\mathbf{v} \, \mathbf{m} \, \mathbf{s}^{-1}$  where

$$\mathbf{v} = 3t^2\mathbf{i} - 6t^{\frac{1}{2}}\mathbf{j}$$

(a) Find the speed of P at time t = 2 seconds.

**(2)** 

(b) Find an expression, in terms of t,  $\mathbf{i}$  and  $\mathbf{j}$ , for the acceleration of P at time t seconds, where t > 0

**(2)** 

At time t = 4 seconds, the position vector of P is  $(\mathbf{i} - 4\mathbf{j})$  m.

(c) Find the position vector of P at time t = 1 second.

**(4)** 

| Que | estion                                                                                                                                                                                                                                                                                                                                                               | Scheme                                                                                                                                                                         | Marks        | AOs     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|
| 1   | (a)                                                                                                                                                                                                                                                                                                                                                                  | Put $t = 2$ in v and use Pythagoras: $\sqrt{12^2 + (-6\sqrt{2})^2}$                                                                                                            | M1           | 3.1a    |
|     |                                                                                                                                                                                                                                                                                                                                                                      | $\sqrt{216}, 6\sqrt{6}$ or 15 or better (m s <sup>-1</sup> )                                                                                                                   | A1           | 1.1b    |
|     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                | (2)          |         |
| 1   | (b)                                                                                                                                                                                                                                                                                                                                                                  | Differentiate v wrt t to obtain a                                                                                                                                              | M1           | 3.4     |
|     |                                                                                                                                                                                                                                                                                                                                                                      | $6t\mathbf{i} - 3t^{-\frac{1}{2}}\mathbf{j}  \text{oe } (\text{m s}^{-2}) \text{ isw}$                                                                                         | A1           | 1.1b    |
|     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                | (2)          |         |
| 1   | (c)                                                                                                                                                                                                                                                                                                                                                                  | Integrate $\mathbf{v}$ wrt $t$ to obtain $\mathbf{r}$                                                                                                                          | M1           | 3.4     |
|     |                                                                                                                                                                                                                                                                                                                                                                      | $\mathbf{r} = t^{3}\mathbf{i} - 4t^{\frac{3}{2}}\mathbf{j} \ (+\mathbf{C})$ $(\mathbf{i} - 4\mathbf{j}) = 4^{3}\mathbf{i} - 4 \times 4^{\frac{3}{2}}\mathbf{j} \ + \mathbf{C}$ | A1           | 1.1b    |
|     |                                                                                                                                                                                                                                                                                                                                                                      | $(\mathbf{i} - 4\mathbf{j}) = 4^3\mathbf{i} - 4 \times 4^{\frac{3}{2}}\mathbf{j} + \mathbf{C}$                                                                                 | M1           | 3.1a    |
|     |                                                                                                                                                                                                                                                                                                                                                                      | $(-62\mathbf{i} + 24\mathbf{j})$ (m) isw e.g. if they go on to find the distance.                                                                                              | A1           | 1.1b    |
|     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                | (4)          |         |
|     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                | (8 n         | narks)  |
| Not | es: Ac                                                                                                                                                                                                                                                                                                                                                               | cept column vectors throughout apart from the answer to (b)                                                                                                                    | •            |         |
| 1a  | M1                                                                                                                                                                                                                                                                                                                                                                   | Need square root but -ve sign not required. Allow <b>i</b> 's and/or <b>j</b> 's to go n their <b>v</b> at $t = 2$ , provided they have applied Pythagoras correctly.          | nissing from | m       |
|     | A1                                                                                                                                                                                                                                                                                                                                                                   | cao <b>N.B.</b> Correct answer with no working can score 2 marks.                                                                                                              |              |         |
| 1b  | M1                                                                                                                                                                                                                                                                                                                                                                   | Both powers decreasing by 1. Allow a column vector.  M0 if <b>i</b> or <b>j</b> is missing but allow recovery in (b).                                                          |              |         |
|     | A1                                                                                                                                                                                                                                                                                                                                                                   | cao. Do not accept a column vector.                                                                                                                                            |              |         |
| 1c  | M1                                                                                                                                                                                                                                                                                                                                                                   | Both powers increasing by 1 M0 if i or j is missing but allow recovery.                                                                                                        |              |         |
|     | A1                                                                                                                                                                                                                                                                                                                                                                   | (r = ) not required                                                                                                                                                            |              |         |
|     | Putting $\mathbf{r} = (\mathbf{i} - 4\mathbf{j})$ and $t = 4$ into their displacement <b>vector</b> expression which must have allow $C$ (allow $C$ ) to give an equation in $C$ only, seen or implied.  Must have attempted to integrate $\mathbf{v}$ for this mark to be available.  N.B. $C$ does not need to be found and this is a method mark, so allow slips. |                                                                                                                                                                                |              | st have |

**A**1

cao

3. [In this question, i and j are horizontal unit vectors.]

A particle *P* of mass 4 kg is at rest at the point *A* on a smooth horizontal plane.

At time t = 0, two forces,  $\mathbf{F}_1 = (4\mathbf{i} - \mathbf{j})\mathbf{N}$  and  $\mathbf{F}_2 = (\lambda \mathbf{i} + \mu \mathbf{j})\mathbf{N}$ , where  $\lambda$  and  $\mu$  are constants, are applied to P

Given that P moves in the direction of the vector  $(3\mathbf{i} + \mathbf{j})$ 

(a) show that

$$\lambda - 3\mu + 7 = 0 \tag{4}$$

At time t = 4 seconds, P passes through the point B.

Given that  $\lambda = 2$ 

(b) find the length of AB.

**(5)** 



| Question | Scheme                                                                                                                                                                                                        | Marks | AOs    |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|
| 3(a)     | $(4\mathbf{i} - \mathbf{j})^{+}(\lambda \mathbf{i} + \mu \mathbf{j}) = (4 + \lambda)\mathbf{i} + (-1 + \mu)\mathbf{j}$                                                                                        | M1    | 3.4    |
|          | Use <b>ratios</b> to obtain an equation in $\lambda$ and $\mu$ only                                                                                                                                           | M1    | 2.1    |
|          | $\frac{(4+\lambda)}{(-1+\mu)} = \frac{3}{1} \qquad \text{or} \qquad \frac{\frac{1}{4}(4+\lambda)}{\frac{1}{4}(-1+\mu)} = \frac{3}{1}$                                                                         | A1    | 1.1b   |
|          | $\lambda - 3\mu + 7 = 0$ * Allow $0 = \lambda - 3\mu + 7$ but nothing else.                                                                                                                                   | A1*   | 1.1b   |
|          |                                                                                                                                                                                                               | (4)   |        |
| (b)      | $\lambda = 2 \Rightarrow \mu = 3$ ; Resultant force = $(6\mathbf{i} + 2\mathbf{j})$ (N)                                                                                                                       | M1    | 3.1a   |
|          | $(6\mathbf{i} + 2\mathbf{j}) = 4\mathbf{a} \qquad \mathbf{OR} \qquad  (6\mathbf{i} + 2\mathbf{j})  = 4a$                                                                                                      | M1    | 1.1b   |
|          | Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ with $\mathbf{u} = 0$ , their $\mathbf{a}$ and $t = 4$ :  Or they may integrate their $\mathbf{a}$ twice with $\mathbf{u} = 0$ and put $t = 4$ : | DM1   | 2.1    |
|          | $\mathbf{r} = \frac{1}{2} \times \frac{(6\mathbf{i} + 2\mathbf{j})}{4} 4^2 = (12\mathbf{i} + 4\mathbf{j})$                                                                                                    |       |        |
|          | $\sqrt{12^2 + 4^2}$                                                                                                                                                                                           | M1    | 1.1b   |
|          | ALTERNATIVE 1 for last two M marks:<br>Use of $s = ut + \frac{1}{2}at^2$ , with $u = 0$ , their $a$ and $t = 4$ : $S = \frac{1}{2} \times \sqrt{1.5^2 + 0.5^2} \times 4^2$                                    |       |        |
|          | Use of Pythagoras to find mag of $\mathbf{a}$ : $a = \sqrt{1.5^2 + 0.5^2}$ M1                                                                                                                                 |       |        |
|          | <b>ALTERNATIVE 2</b> for last two M marks:<br>Use of $s = ut + \frac{1}{2}at^2$ , with $u = 0$ , their $a$ and $t = 4$ :                                                                                      |       |        |
|          | $s = \frac{1}{2} \times \left(\frac{\sqrt{6^2 + 2^2}}{4}\right) \times 4^2$                                                                                                                                   |       |        |
|          | Use of Pythagoras to find $ (6\mathbf{i} + 2\mathbf{j}) $ : $= \sqrt{6^2 + 2^2}$ M1                                                                                                                           |       |        |
|          | $\sqrt{160}$ , $2\sqrt{40}$ , $4\sqrt{10}$ oe or 13 or better (m)                                                                                                                                             | A1    | 1.1b   |
|          |                                                                                                                                                                                                               | (5)   |        |
|          |                                                                                                                                                                                                               | (0 n  | narks) |

| 3a | M1 | Adding the two forces, i's and j's must be collected (or must be a <b>single</b> column vector) seen or implied                                        |
|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | M1 | Must be using ratios; Ignore an equation e.g. $(4 + \lambda)\mathbf{i} + (-1 + \mu)\mathbf{j} = 3\mathbf{i} + \mathbf{j}$ if they go on to use ratios. |

|            |      | However, if they write $4 + \lambda = 3$ and $-1 + \mu = 1$ then $3(-1 + \mu) = 3$ so                                                     |
|------------|------|-------------------------------------------------------------------------------------------------------------------------------------------|
|            |      | $4 + \lambda = 3(-1 + \mu)$ with no use of a constant, it's M0                                                                            |
|            |      | They may use the acceleration, with a factor of $\frac{1}{4}$ top and bottom, see alternative                                             |
|            |      | Allow one side of the equation to be inverted                                                                                             |
|            | A1   | Correct equation                                                                                                                          |
|            | A1*  | Given answer correctly obtained. Must see at least one line of working, with the LH fraction 'removed'.                                   |
| 21         | 3.61 | Adding $\mathbf{F}_1$ and $\mathbf{F}_2$ to find the resultant force, $\lambda$ and $\mu$ must be substituted                             |
| <b>3</b> b | M1   | <b>N.B.</b> M0 if they use $\mu = 2$ coming from $-1 + \mu = 1$ in part (a).                                                              |
|            | M1   | Use of $\mathbf{F} = 4\mathbf{a}$ Or $ \mathbf{F}  = 4a$ , where $\mathbf{F}$ is their resultant. (including $3\mathbf{i} + \mathbf{j}$ ) |
|            |      | This is an independent mark, so could be earned, for example, if they have subtracted the forces to find the 'resultant'                  |
|            |      | <b>N.B.</b> M0 if only using $\mathbf{F}_1$ or $\mathbf{F}_2$                                                                             |
|            | DM   | Dependent on previous M mark for                                                                                                          |
|            | 1    | Either: use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ with $\mathbf{u} = 0$ , their $\mathbf{a}$ and $t = 4$ to produce a  |
|            |      | displacement vector                                                                                                                       |
|            |      | <b>Or</b> : integrate twice, with $\mathbf{u} = 0$ , their $\mathbf{a}$ and $t = 4$ to produce a displacement Vector                      |
|            |      | Or: use of $s = ut + \frac{1}{2}at^2$ with $u = 0$ , their $a$ and $t = 4$ to produce a length                                            |
|            |      | Use of Pythagoras, with square root, to find the magnitude of their displacement                                                          |
|            | M1   | vector, $\mathbf{a}$ or $\mathbf{F}$ (M0 if only using $\mathbf{F}_1$ or $\mathbf{F}_2$ ) depending on which method they have used.       |
|            | A1   | cao                                                                                                                                       |