Y2M7 XMQs and MS

(Total: 99 marks)

1.	P3_Sample	Q7	•	8	marks	-	Y2M7	Applications of forces
2.	P3_Sample	Q9		13	marks	-	Y2M4	Moments
3.	P3_Specimen	Q8	•	11	marks	-	Ү2М5	Forces and friction
4.	P3_Specimen	Q9		14	marks	-	Ү2М4	Moments
5.	P32_2019	Q3		12	marks	-	Ү2М5	Forces and friction
6.	P32_2020	Q1	•	9	marks	-	Ү2М5	Forces and friction
7.	P32_2021	Q2	•	12	marks	-	Y2M7	Applications of forces
8.	P32_2021	Q3		10	marks	-	Y2M4	Moments
9.	P32_2022	Q2		10	marks	-	Y2M5	Forces and friction

A rough plane is inclined to the horizontal at an angle α , where $\tan \alpha = \frac{3}{4}$.	
· · ·	
A particle of mass <i>m</i> is placed on the plane and then projected up a line of greatest slop of the plane.	e (6)
The coefficient of friction between the particle and the plane is μ .	
The particle moves up the plane with a constant deceleration of $\frac{4}{5}g$.	
(a) Find the value of μ .	
	(6)
The particle comes to rest at the point A on the plane.	
(b) Determine whether the particle will remain at <i>A</i> , carefully justifying your answer.	(2)
	(2)
	§
	§
	§
	§
	§
	§
	§
	§
	§
	§
	§
	§
	§
	§
	§
	§

Question	Scheme	Marks	AOs			
7(a)	$R = mg\cos\alpha$	B1	3.1b			
	Resolve parallel to the plane	M1	3.1b			
	$-F - mg\sin\alpha = -0.8mg$	A1	1.1b			
	$F = \mu R$	M1	1.2			
	Produce an equation in μ only and solve for μ	M1	2.2a			
	$\mu = \frac{1}{4}$	A1	1.1b			
		(6)				
(b)	Compare $\mu mg \cos \alpha$ with $mg \sin \alpha$	M1	3.1b			
	Deduce an appropriate conclusion	A1 ft	2.2a			
		(2)				
			(8 marks)			
Notes:						
(a)						
	$= mg\cos\alpha$ esolving parallel to the plane					
	correct equation					
2 nd M1: for u						
	eliminating F and R to give a value for μ					
2nd A1: for <i>µ</i>						
(b)						
M1: comparing size of limiting friction with weight component down the plane						
A1ft: for an	appropriate conclusion from their values					

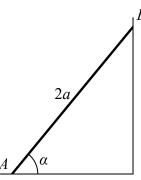


Figure 1 A uniform ladder AB, of length 2a and weight W, has its end A on rough horizontal ground. The coefficient of friction between the ladder and the ground is $\frac{1}{4}$. The end *B* of the ladder is resting against a smooth vertical wall, as shown in Figure 1. A builder of weight 7W stands at the top of the ladder. To stop the ladder from slipping, the builder's assistant applies a horizontal force of magnitude P to the ladder at A, towards the wall. The force acts in a direction which is perpendicular to the wall. The ladder rests in equilibrium in a vertical plane perpendicular to the wall and makes an angle α with the horizontal ground, where $\tan \alpha = \frac{5}{2}$. The builder is modelled as a particle and the ladder is modelled as a uniform rod. (a) Show that the reaction of the wall on the ladder at B has magnitude 3W. (5) (b) Find, in terms of W, the range of possible values of P for which the ladder remains in equilibrium. (5) Often in practice, the builder's assistant will simply stand on the bottom of the ladder. (c) Explain briefly how this helps to stop the ladder from slipping. (3)

Question	Scheme	Marks	AOs
9(a)	Take moments about A		
	(or any other complete method to	M1	3.3
	produce an equation in S, W and α only)		
	$Wa\cos\alpha + 7W2a\cos\alpha = S2a\sin\alpha$	A1	1.1b
		Al	1.1b
	Use of $\tan \alpha = \frac{5}{2}$ to obtain S	M1	2.1
	S = 3W *	A1*	2.2a
		(5)	
(b)	R = 8W	B1	3.4
	$F = \frac{1}{4} R (= 2W)$	M1	3.4
	$P_{\text{MAX}} = 3W + F$ or $P_{\text{MIN}} = 3W - F$	M1	3.4
	$P_{\text{MAX}} = 5W \text{ or } P_{\text{MIN}} = W$	Al	1.1b
	$W \le P \le 5W$	Al	2.5
		(5)	
(c)	M(A) shows that the reaction on the ladder at B is unchanged	M1	2.4
	also <i>R</i> increases (resolving vertically)	M1	2.4
	which increases max F available	M1	2.4
		(3)	
		(13 marks)

Question 9 continued Notes: **(a)** 1st M1: for producing an equation in S, W and α only 1st A1: for an equation that is correct, or which has one error or omission 2nd A1: for a fully correct equation **2nd M1:** for use of $\tan \alpha = \frac{5}{2}$ to obtain S in terms of W only 3^{rd} A1*: for given answer S = 3W correctly obtained **(b)** for R = 8W**B1**: 1st M1: for use of $F = \frac{1}{4} R$ **2nd M1:** for either P = (3W + their F) or P = (3W - their F)1st A1: for a correct max or min value for a correct range for P 2^{nd} A1: for a correct range for P (c) 1st M1: for showing, by taking moments about A, that the reaction at B is unchanged by the builder's assistant standing on the bottom of the ladder

 2^{nd} M1: for showing, by resolving vertically, that *R* increases as a result of the builder's assistant standing on the bottom of the ladder

 3^{rd} M1: for concluding that this increases the limiting friction at A

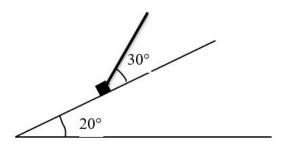


Figure 1

A small box of mass 3 kg moves on a rough plane which is inclined at an angle of 20° to the horizontal.

The box is pulled up a line of greatest slope of the plane using a rope which is attached to the box.

The rope makes an angle of 30° with the plane, as shown in Figure 1.

The rope lies in the vertical plane which contains a line of greatest slope of the plane. The coefficient of friction between the box and the plane is 0.3. The tension in the rope is 25 N.

The box is modelled as a particle, the rope is modelled as a light inextensible string and air resistance is ignored.

(a) Using the model, find the acceleration of the box.

(b) Suggest one improvement to the model that would make it more realistic.

The rope now breaks and the box slows down and comes to rest.

(c) Show that, after the box comes to rest, it immediately starts to move down the plane.

(3)

(7)

(1)

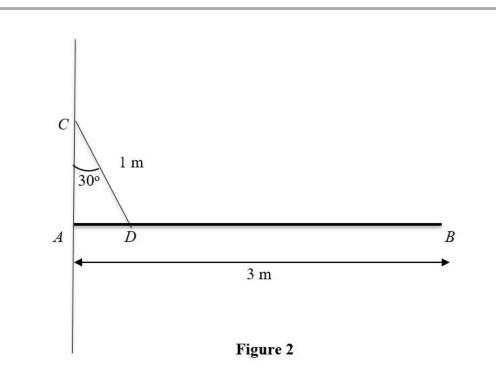
9MA0/03 Mock Paper: Statistics and Mechanics mark scheme

Scheme	Marks	AOs
Resolve perp to the plane	M1	3.1b
$R + 25\sin 30^\circ = 3g\cos 20^\circ$	A1	1.1b
Equation of motion up the plane	M1	3.1b
$25\cos 30^{\circ} - 3g\sin 20^{\circ} - F = 3a$	A1	1.1b
F = 0.3R	B1	1.2
Correct strategy: sub for <i>F</i> and solve for <i>a</i>	M1	3.1b
$a = 2.4 \text{ or } 2.35 \text{ (m s}^{-2}\text{)}$	A1	2.2a
	(7)	
e.g. Include air resistance	B1	3.5c
	(1)	
$R = 3g\cos 20^\circ$ so $F\max = 0.9 g\cos 20^\circ$	B1	3.1b
Consider $3g\sin 20^\circ - 0.9g\cos 20^\circ$	M1	2.1
Since > 0 , box moves down plane. *	A1*	2.2a
	(3)	
I	(11 r	narks)
not need to be substituted		Ţ
	Resolve perp to the plane $R + 25 \sin 30^{\circ} = 3g\cos 20^{\circ}$ Equation of motion up the plane $25 \cos 30^{\circ} - 3g\sin 20^{\circ} - F = 3a$ $F = 0.3R$ Correct strategy: sub for F and solve for a $a = 2.4$ or 2.35 (m s ⁻²)e.g. Include air resistance $R = 3g\cos 20^{\circ}$ so $F \max = 0.9 g\cos 20^{\circ}$ Consider $3g\sin 20^{\circ} - 0.9g\cos 20^{\circ}$ Since > 0 , box moves down plane. *	Resolve perp to the planeM1 $R + 25 \sin 30^\circ = 3g\cos 20^\circ$ A1Equation of motion up the planeM1 $25 \cos 30^\circ - 3g\sin 20^\circ - F = 3a$ A1 $F = 0.3R$ B1Correct strategy: sub for F and solve for aM1 $a = 2.4$ or 2.35 (m s ⁻²)A1(7)e.g. Include air resistanceB1(1) $R = 3g\cos 20^\circ$ so $F\max = 0.9 g\cos 20^\circ$ M1Since > 0, box moves down plane. *A1*(3)(11 m)(11 m)

M1: Correct overall strategy to solve problem by substituting for F and solving for a

A1: Only possible answers, since g = 9.8 used.

(b)


B1: e.g. include air resistance, allow for the weight of the rope

(c)

B1: Correct overall strategy (First equation could be implied)

M1: Must be difference or a comparison of the two values

A1*: Given answer

A beam CD, of mass 20 kg and length 3 m, is smoothly hinged to a vertical wall at one end C.

The beam is held in equilibrium in a horizontal position by a rope of length 1 m. One end of the rope is fixed to a point. *E*. on the wall which is vertically above *C*. The other end of the rope is fixed to the point *F* on the beam so that angle *CEF* is 30^{q} , as shown in Figure 2.

The beam is modelled as a uniform rod and the rope is modelled as a light inextensible string.

Wsing the model, find

9.

(a) "'the tension in the rope,
*d+"'y g'f ktgevkqp''qh'y g'hqteg''gzgtvgf ''d{ ''y g'y cm'qp''y g''dgco ''cv'C0
*e+"'Ki'y g'tqr g'y gtg''pqv'o qf gmgf ''cu''dgkpi ''hi j v.''uvcvg''j qy ''y ku'y qwf ''chhgev''y g''
*e+"'Ki'y g'tqr g.''gzr nkpkpi ''{qwt''cpuy gt ''ectghwm{0
*u++
Vj g'tqr g''ku''pqy ''tgo qxgf ''cpf ''tgr ncegf ''d{ ''c''nqpi gt''tqr g'y j kej ''ku''uvkm''cwcej gf ''q''y g''
Vj g''tqr g''ku''pqy ''tgo qxgf ''cpf ''tgr ncegf ''d{ ''c''nqpi gt''tqr g'y j kej ''ku''uvkm''cwcej gf ''q''y g''
y cm''cv'E ''dwi'ku''pqy ''cwcej gf ''q''y g''dgco ''cv'I .''y j gtg'I ''ku''y g'' g'' ku''y g''

*f + Uj qy ''y cv''y g'hqteg"gzgtvgf ''d{ ''y g''y cm''qp''y g''dgco ''cv'C''pqy ''acts horizontally

dgco 'CD'tgo ckpu'kp'gs wkrkdt kwo 'kp'c'j qtk qpvcn'r qukskqp0

9MA0/03 Mock Paper: Statistics and Mechanics mark scheme

Scheme	Marks	AOs		
Moments about A (or any other complete method)	M1	3.3		
$T\cos 30^{\circ} x (1\sin 30^{\circ}) = 20g x 1.5$	A1	1.1.t		
$T\cos 30^{\circ} x (1\sin 30^{\circ}) = 20g x 1.5$	A1	1.1.t		
T = 679 or 680 (N)	A1	1.1.ł		
	(4)			
Resolve horizontally	M1	3.1b		
$X = T \cos 60^{\circ}$	A1	1.1b		
Resolve vertically	M1	3.1b		
$Y = T\cos 30^{\circ} - 20g$	A1	1.1b		
Use of $\tan \theta = \frac{Y}{X}$ and sub for T	M1	3.4		
49° (or better), below horizontal, away from wall	A1	2.2a		
	(6)			
Tension would increase as you move from D to C	B1	3.5a		
Since each point of the rope has to support the length of rope below it	B1	2.4		
	(2)			
Take moments about G , $1.5Y = 0$	M1	3.3		
Y = 0 hence force acts horizontally.*	A1*	2.2a		
	(2)			
(14 mark				
et overall strategy e.g. $M(A)$, with usual rules, to give equation in <i>T</i> only one error) Condone 1 error two or more errors)				
679 or 680 (since $g = 9.8$ used)				
)	Moments about A (or any other complete method) T cos30° x (1sin30°) = 20g x 1.5 T cos30° x (1sin30°) = 20g x 1.5 T = 679 or 680 (N) Resolve horizontally $X = T \cos 60^{\circ}$ Resolve vertically $Y = T \cos 30^{\circ} - 20g$ Use of $\tan \theta = \frac{Y}{X}$ and sub for T 49° (or better), below horizontal, away from wall Tension would increase as you move from D to C Since each point of the rope has to support the length of rope below it Take moments about G, $1.5Y = 0$ Y = 0 hence force acts horizontally.* (t overall strategy e.g. M(A), with usual rules, to give equation in T only one error) Condone 1 error two or more errors)	Moments about A (or any other complete method)M1 $T \cos 30^{\circ} x (1\sin 30^{\circ}) = 20g x 1.5$ A1 $T \cos 30^{\circ} x (1\sin 30^{\circ}) = 20g x 1.5$ A1 $T = 679 \text{ or } 680 (N)$ A1 $T = 679 \text{ or } 680 (N)$ A1(4)Resolve horizontallyM1 $X = T \cos 60^{\circ}$ A1Resolve verticallyM1 $Y = T \cos 30^{\circ} - 20g$ A1Use of $\tan \theta = \frac{Y}{X}$ and sub for TM149° (or better), below horizontal, away from wallA160Tension would increase as you move from D to CB1Since each point of the rope has to support the length of rope below itB1Y = 0 hence force acts horizontally.*A1*(2)Take moments about G, $1.5Y = 0$ M1Y = 0 hence force acts horizontally.*A1*(2)toverall strategy e.g. M(A), with usual rules, to give equation in T only one error) Condone 1 error two or more errors)M2		

M1: Using an appropriate strategy to set up first of two equations, with usual rules applying

e.g. Resolve horiz. or M(C)

A1: Correct equation in *X* only

M1: Using an appropriate strategy to set up second of two equations, with usual rules applying

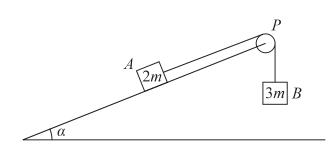
e.g. Resolve vert. or M(D)

A1: Correct equation in *Y* only

9MA0/03 Mock Paper: Statistics and Mechanics mark scheme

M1: Using the model and their *X* and *Y*

A1: 49 or better (since g cancels) Need all three bits of answer to score this mark or any other appropriate angle e.g 41° to wall, downwards and away from wall


(c)

B1: Appropriate equivalent comment

B1: Appropriate equivalent reason

(d)

M1: Using the model and any other complete method e.g. the three force condition for equilibrium A1*: Correct conclusion GIVEN ANSWER

Two blocks, A and B, of masses 2m and 3m respectively, are attached to the ends of a light string.

Initially *A* is held at rest on a fixed rough plane.

The plane is inclined at angle α to the horizontal ground, where $\tan \alpha = \frac{5}{12}$

The string passes over a small smooth pulley, P, fixed at the top of the plane.

The part of the string from A to P is parallel to a line of greatest slope of the plane. Block B hangs freely below P, as shown in Figure 1.

The coefficient of friction between A and the plane is $\frac{2}{3}$

The blocks are released from rest with the string taut and A moves up the plane.

The tension in the string immediately after the blocks are released is *T*.

The blocks are modelled as particles and the string is modelled as being inextensible.

(a) Show that
$$T = \frac{12mg}{5}$$

reaching P.

3.

After B reaches the ground, A continues to move up the plane until it comes to rest before

(b) Determine whether A will remain at rest, carefully justifying your answer.

(2)

(8)

(c) Suggest two refinements to the model that would make it more realistic.

(2)

6

Question	Scheme	Marks	AO
3(a)	$\begin{array}{c} P \\ R \\ T \\ A \\ 2m \\ F \\ a \\ 2mg \\ 3mg \\ $		
	$R = 2mg\cos\alpha$	B1	3.4
	$F = \frac{2}{3}R$	B1	1.2
	Equation of motion for <i>A</i> :	M1	3.3
	$T - F - 2mg\sin\alpha = 2ma$	A1	1.1b
	Equation of motion for <i>B</i> :	M1	3.3
	3mg - T = 3ma	A1	1.1b
	Complete strategy to find an equation in T , m and g only.	M1	3.1b
	$T = \frac{12mg}{5} *$	A1*	2.2a
		(8)	
(b)	$(F_{\max} =) \frac{16mg}{13} > \frac{10mg}{13}$	M1	2.1
	so A will not move.	A1	2.2a
		(2)	
(c)	 Extensible string Weight of string Friction at pulley e.g. rough pulley Allow for the dimensions of the blocks e.g. "Do not model blocks as particles"; "(include) air resistance"; "include rotational effects of forces on blocks i.e. spin" 	B1 B1	3.5c 3.5c
		(2)	
		(12)	

M	arks	Notes
3 a	B1	Normal reaction between A and the plane seen or implied, $\cos \alpha$ does not need to be substituted.
	B1	$F = \frac{2}{3}R$ seen or implied anywhere, including part (b)
	M1	Form an equation of motion for A . Must include all relevant terms. Must be the correct mass but condone consistent missing m 's. Condone sign errors and sin/cos confusion
	A1	Correct unsimplified equation (<i>F</i> does not need to be substituted). Allow consistent use of $(-a)$ N.B. If $T - 2mg = 2ma$ is seen with no working, M0A0 unless both B1 marks have been scored.
	M1	Form an equation of motion for B . Must be the correct mass on RHS but condone consistent missing m 's. Condone sign errors and sin/cos confusion.
	A1	Correct unsimplified equation (<i>F</i> does not need to be substituted). Allow consistent use of $(-a)$
		N.B. Allow the 'whole system' equation to replace the equation for A or B. $3mg - F - 2mg \sin \alpha = 5ma$ Must be the correct mass on RHS but condone consistent missing <i>m</i> 's. Condone sign
		errors and sin/cos confusion.
		Complete method to give an equation in <i>T</i> , <i>m</i> and <i>g</i> only. N.B. Allow θ in the equation if they have defined what θ is: $a = \theta - \tan^{-1}(5)$
	M1	equation if they have defined what θ is: e.g. $\theta = \tan^{-1}(\frac{5}{12})$ This is an <u>independent</u> mark but they must have two simultaneous equations in <i>T</i> and <i>a</i> unless one of the equations is the whole system equation in which case one equation will be in <i>T</i> and <i>a</i> and the other equation will be in <i>a</i> only.
	A1*	Obtain the given answer from correct working using EXACT trig ratios. (not available if using a decimal angle)
		Comparison of their F_{max} ($\frac{2}{3}R$) and their component of weight down the slope, must
3b	M 1	be comparing numerical values. oe e.g. if they consider the difference
		N.B. Allow comparison of μ and $\tan \alpha$ with numerical values
	A1	Correctly justified conclusion and no errors seen N.B. If they equate their difference to an ' <i>ma</i> ' term then A0
3c	B1 B1	 Deduct 1 mark for each extra (more than 2) incorrect answer up to a maximum of 2 incorrect answers. Ignore extra correct answers. e.g. two correct, one incorrect B1 B0 one correct, one incorrect B1 B0 one correct, two incorrect B0 B0 Ignore incorrect reasons or consequences. Ignore any mention of wind or a general reference to friction.

1. A rough plane is inclined to the horizontal at an angle α , where $\tan \alpha = \frac{3}{4}$

A brick P of mass m is placed on the plane.

The coefficient of friction between P and the plane is μ

Brick P is in equilibrium and on the point of sliding down the plane.

Brick P is modelled as a particle.

Using the model,

(a) find, in terms of m and g, the magnitude of the normal reaction of the plane on brick P

(b) show that $\mu = \frac{3}{4}$

For parts (c) and (d), you are not required to do any further calculations.

Brick P is now removed from the plane and a much heavier brick Q is placed on the plane.

The coefficient of friction between Q and the plane is also $\frac{3}{4}$

(c) Explain briefly why brick Q will remain at rest on the plane.

Brick Q is now projected with speed $0.5 \,\mathrm{m\,s^{-1}}$ down a line of greatest slope of the plane.

8

Brick Q is modelled as a particle.

Using the model,

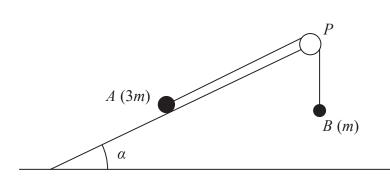
(d) describe the motion of brick Q, giving a reason for your answer.

(2)

(1)

(2)

(4)


Que	estion	Scheme	Marks	AOs
1	.(a)	Resolve perpendicular to the plane	M1	3.4
		$R = mg\cos\alpha = \frac{4}{5}mg$	A1	1.1b
			(2)	
1	. (b)	Resolve parallel to the plane or horizontally or vertically	M1	3.4
		$F = mg\sin\alpha$ or $R\sin\alpha = F\cos\alpha$	A1	1.1b
		Use $F = \mu R$ and solve for μ	M1	2.1
		$\mu = \frac{3}{4} *$	A1*	2.2a
			(4)	
1	.(c)	The forces acting on <i>Q</i> will still balance as the <i>m</i> 's cancel oe Other possibilities: e.g. the <u>friction</u> will increase <u>in the same proportion</u> as <u>the weight</u> <u>component or force down the plane</u> . The <u>force pulling the brick down the plane</u> increases <u>by the same</u> <u>amount</u> as the <u>friction</u> oe This mark can be scored if they do the calculation.	B1	2.4
			(1)	
1	(d)	Brick Q slides down the plane with constant speed.	B1	2.4
		No resultant force down the plane (so no acceleration) oe	B1	2.4
		These marks can be scored if they do the calculation.	(2)	
			(9 n	narks)
Not	es:			
1a	M1	Correct no. of terms, condone sin/cos confusion		
	A1	cao with no wrong working seen. mgcos36.86 is A0		
1b	M1	Correct no. of terms, condone sin/cos confusion		
	A1	Correct equation		
	M1	Must use $F = \mu R$ (not merely state it) to obtain a numerical value for This is an independent M mark.	μ .	
	A1*	Given answer correctly obtained		
1c	B1	Must have the 3 underlined phrases/word oe		
1d	B1	Must say constant speed.		
	B1	Any appropriate equivalent statement		

(2)

(7)

(2)

(1)

A small stone A of mass 3m is attached to one end of a string.

A small stone B of mass m is attached to the other end of the string.

Initially A is held at rest on a fixed rough plane.

The plane is inclined to the horizontal at an angle α , where $\tan \alpha = \frac{3}{4}$

The string passes over a pulley P that is fixed at the top of the plane.

The part of the string from A to P is parallel to a line of greatest slope of the plane.

Stone *B* hangs freely below *P*, as shown in Figure 1.

The coefficient of friction between A and the plane is $\frac{1}{6}$

Stone A is released from rest and begins to move down the plane.

The stones are modelled as particles.

The pulley is modelled as being small and smooth.

The string is modelled as being light and inextensible.

Using the model for the motion of the system before *B* reaches the pulley,

(a) write down an equation of motion for A

- (b) show that the acceleration of A is $\frac{1}{10}g$
- (c) sketch a velocity-time graph for the motion of *B*, from the instant when *A* is released from rest to the instant just before *B* reaches the pulley, explaining your answer.

In reality, the string is not light.

(d) State how this would affect the working in part (b).

2.

Question	Scheme	Marks	AOs
	Mark parts (a) and (b) together		
2(a)	Equation of motion for A	M1	3.3
	$3mg\sin\alpha - F - T = 3ma$	A1	1.1b
		(2)	
2(b)	Resolve perpendicular to the plane	M1	3.4
	$R = 3mg\cos\alpha$	A1	1.1b
	$F = \frac{1}{6}R$	B1	1.2
	Equation of motion for <i>B</i> OR for whole system	M1	3.3
	$T - mg = ma$ OR $3mg\sin\alpha - F - mg = 3ma + ma$	A1	1.1b
	Complete method to solve for <i>a</i>	DM1	3.1b
	$a = \frac{1}{10}g *$	A1*	2.2a
		(7)	
2(c)		B1	1.1b
	e.g. acceleration (of <i>B</i>) is constant; dependent on first B1	DB1	2.4
		(2)	
2(d)	e.g. the tensions in the two equations of motion would be different. Tension on <i>A</i> would be different to tension on <i>B</i>	B1	3.5a
		(1)	
	·	(12 n	narks)
	N.B. If m's are consistently missing treat as a MR, so max (a) M1A0 (b) M1A0B0M1A1M1A1 (c) B1B1 (d) B1		
	For (a) and (b), allow verification, but must see full equations of motion Equation in T and a with correct no. of terms, condone sign errors and		
2a M1			
	Correct equation (allow $(-a)$ instead of <i>a</i> in <u>both</u> equations)		

2b	M1	Correct no. of terms, condone sign errors and sin/cos confusion Allow if appears in (a)
	A1	Correct equation
	B1	Seen anywhere in (a) or (b), including on a diagram
	M1	Equation (for <i>B</i>) in <i>T</i> and <i>a</i> with correct no. of terms, condone sign errors and sin/cos confusionOR Whole system equation with correct no. of terms, condone sign errors and sin/cos confusion
	A1	Correct equation
	DM1	Complete method (trig may not be substituted), dependent on M1 in (a) and second M1 in (b) if they use two equations, or second M1 in (b) if they use one equation.
	A1*	Correct answer correctly obtained.
2c	B1	Straight line starting at the origin (could be reflected in the <i>t</i> -axis). B0 if continuous vertical line at the end.
	DB1	Dependent on first B1, for any equivalent statement
2d	B1	B0 if incorrect extras

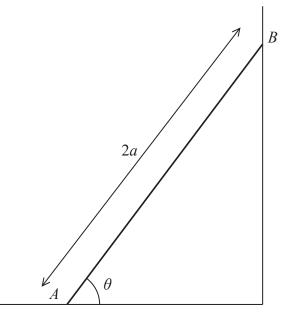


Figure 2

A beam AB has mass m and length 2a.

The beam rests in equilibrium with A on rough horizontal ground and with B against a smooth vertical wall.

The beam is inclined to the horizontal at an angle θ , as shown in Figure 2.

The coefficient of friction between the beam and the ground is μ

The beam is modelled as a uniform rod resting in a vertical plane that is perpendicular to the wall.

Using the model,

3.

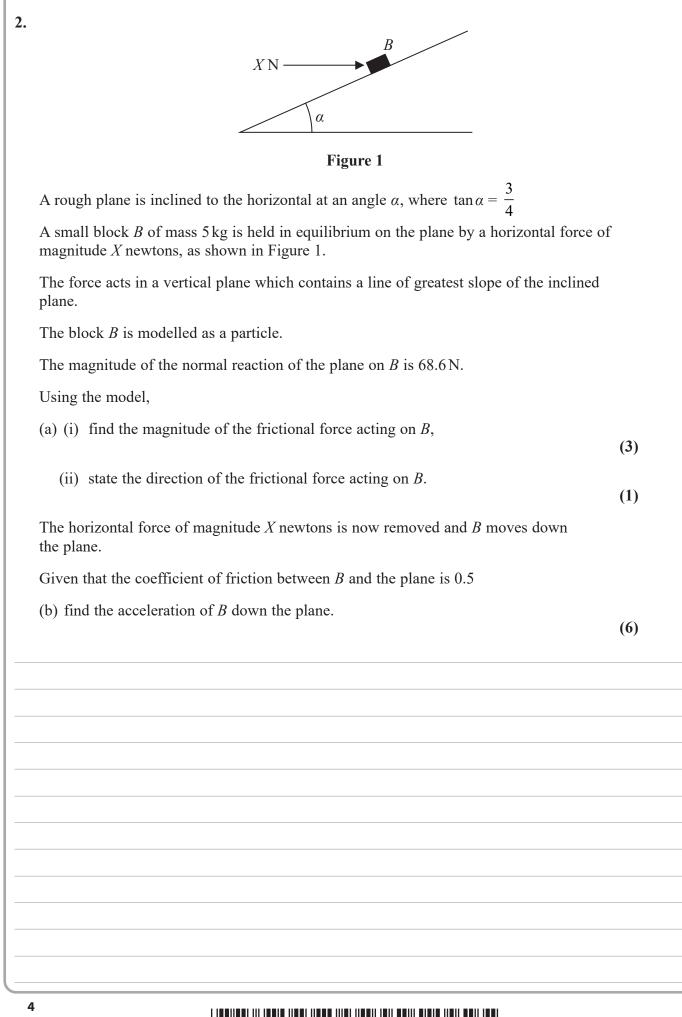
(a) show that $\mu \ge \frac{1}{2} \cot \theta$

A horizontal force of magnitude kmg, where k is a constant, is now applied to the beam at A.

This force acts in a direction that is perpendicular to the wall and towards the wall.

Given that $\tan \theta = \frac{5}{4}$, $\mu = \frac{1}{2}$ and the beam is now in limiting equilibrium,

(b) use the model to find the value of k.


(5)

(5)

Question	Scheme	Marks	AOs
	Part (a) is a 'Show that' so equations need to be given in full to earn A marks		
3(a)	$\begin{array}{c c} C & S & B \\ \hline G & mg \\ \hline A & F \end{array} D$		
	Moments equation: (M1A0 for a moments inequality)	M1	3.3
	$\begin{split} M(A), & mga\cos\theta = 2Sa\sin\theta \\ M(B), & mga\cos\theta + 2Fa\sin\theta = 2Ra\cos\theta \\ M(C), & F \times 2a\sin\theta = mga\cos\theta \\ M(D), & 2Ra\cos\theta = mga\cos\theta + 2Sa\sin\theta \\ M(G), & Ra\cos\theta = Fa\sin\theta + Sa\sin\theta . \end{split}$	A1	1.1b
	$(\diamondsuit) \ R = mg \ \mathbf{OR} \ (\leftrightarrow) \ F = S$	B1	3.4
	Use their equations (they must have enough) and $F \le \mu R$ to give an inequality in μ and θ only (allow DM1 for use of $F = \mu R$ to give an <i>equation</i> in μ and θ only)	DM1	2.1
	$\mu \ge \frac{1}{2} \cot \theta *$	A1*	2.2a
		(5)	
3(b)	$C \qquad N \qquad B$ $G \qquad mg \qquad D$ $\frac{1}{2}mg \qquad A \qquad kmg$		
3(0)	Moments equation:	M1	3.4
	$M(A), mga \cos \theta = 2Na \sin \theta$ $M(B), mga \cos \theta + 2kmga \sin \theta = 2Ra \cos \theta + \frac{1}{2}mg 2a \sin \theta$ $M(D), 2Ra \cos \theta = mga \cos \theta + N2a \sin \theta$ $M(G), kmga \sin \theta + Na \sin \theta = \frac{1}{2}mga \sin \theta + Ra \cos \theta$	A1	1.1b

		S.C. M(C), $mga\cos\theta + \frac{1}{2}mg2a\sin\theta = kmg2a\sin\theta$ M1A1B1					
		$1 + \frac{5}{4} = \frac{5k}{2}$ M1					
		k = 0.9 A1					
		$N = kmg - F \mathbf{OR} R = mg$	B1	3.3			
		Use their equations (they must have enough) to solve for k (numerical)	DM1	3.1b			
		k = 0.9 oe	A1	1.1b			
			(5)				
			(10 n	narks)			
Note	es:						
3a	M1	Any moments equation with correct terms, condone sign errors and sin/cos confusion					
	A1	Correct equation					
	B1	Correct equation					
	DM1	Dependent on M1, for using their equations (they must have enough) and $F \le \mu R$ to give an inequality in μ and θ only (allow M1 for use of $F = \mu R$ to give an equation in μ and θ only)					
	A1*	Given answer correctly obtained with no wrong working seen (e.g. if they use $F = \mu R$ anywhere, A0)					
3b	M1	Any moments equation with correct terms, condone sign errors					
	A1	Correct equation					
	B1	Correct equation					
	DM1	Dependent on M1, for using their equations (they must have enough) with trig substituted, to solve for k , which must be numerical.					
	A1	cao					

Question	Scheme	Marks	AOs
2(a)(i)	Resolve vertically	M1	3.1b
	F acting UP the plane: OR F acting DOWN the plane:	A1	1.1b
	$(\uparrow) F \sin \alpha + 68.6 \cos \alpha = 5g \qquad -F \sin \alpha + 68.6 \cos \alpha = 5g$		
	Other possible equations from which X would need to be eliminated to give an equation in F only to earn the M mark are shown below.		
	The equation in <i>F</i> only must then be correct to earn the A mark.		
	Possible equations:		
	(\checkmark)68.6 = $X \sin \alpha + 5g \cos \alpha$ (leads to $X = 49$ with $g = 9.8$)		
	F acting UP the plane: OR F acting DOWN the plane:		
	$(\nearrow)F + X\cos\alpha = 5g\sin\alpha$ $-F + X\cos\alpha = 5g\sin\alpha$		
	$(\rightarrow) F \cos \alpha + X = 68.6 \sin \alpha \qquad -F \cos \alpha + X = 68.6 \sin \alpha$		
	 9.8 (N) (49/5 is A0) N.B. If sin and cos are interchanged in all equations, this leads to an answer of 9.8 in the wrong direction and can only score (a) (i)M1A0A0 (ii) A0 	A1	1.11
		(3)	
2(a)(ii)	Down the plane (Allow down or downwards or an arrow \swarrow , but must appear as the answer to (a) (ii) not just on the diagram.)	A1	2.28
		(1)	
2(b)	N.B. If they use $R = 68.6$ in this part, the maximum they can score is M1A1M0A0M0A0		
	If they use $F = 9.8$ or their F from (a) in this part, the maximum they can score is M1A1M0A0M0A0		
	Equation of motion down the plane	M1	2.1
	$5g\sin\alpha - F = 5a$ Allow (-a) instead of a	A1	1.11
	Resolve perpendicular to the plane	M1	3.11
	$R = 5g\cos\alpha$	A1	1.11
	F = 0.5R seen	M1	3.4
	$a = 1.96 \text{ or } 2.0 \text{ or } 2 \text{ (m s}^{-2} \text{) or } \frac{1}{5}g$	A1	1.11
		(6)	
		(10 marks	

Not	Notes:				
2a (i)	M1	Complete method to obtain an equation in <i>F</i> only. For each equation used, correct no. of terms, dimensionally correct, condone sin/cos confusion and sign errors, each term that needs to be resolved must be resolved.			
	A1	Correct equation in F only, trig does not need to be substituted			
	A1	cao (must be positive)			
2a (ii)	A1	cao. Note that this mark is dependent on an answer of 9.8 or -9.8 for (a)(i) from a fully <u>correct solution</u> unless they have used $g = 9.81$, in which case the answer will be 9.7 or -9.7 (2sf) see SC2 below. N.B. Allow this mark, if their answer to (a)(i) is fully correct apart from a small error due to use of inaccurate trig i.e using an angle 36.9°			
		SC 1: If they use μR at any point (with an unknown μ) for F in part (a), can score (a)(i) max M1A1A0 (a) (ii) A1, where they must have obtained $\mu R = 9.8$ or -9.8 , from correct working.			
		SC 2: If $g = 9.81$ is used consistently throughout 2(a), (leading to $X = 48.9$ and $F = 9.7$ (2sf)) can score max (a)(i) M1A1A0 (a)(ii) A1			
2b	M1	Correct no.of terms, dimensionally correct, condone sin/cos confusion and sign errors, each term that needs to be resolved must be resolved.			
	A1	Correct equation for their F.			
	M1	Correct no. of terms, dimensionally correct, condone \sin/\cos confusion and sign errors, each term that needs to be resolved must be resolved. (N.B. M0 if $R = 68.6$ (N) is used in this equation)			
	A1	Correct equation			
	M1	Could be seen on a diagram (N.B . M0 if $R = 68.6$ (N) is used)			
	A1	Cao. Must be positive.			