Y1S5 XMQs and MS (Total: 16 marks) ``` 1. P31(AS)_2018 Q2 . 4 marks - Y1S5 Probability ``` - 2. P31(AS)_2019 Q2 . 5 marks Y1S5 Probability - 3. $P31(AS)_2021$ Q1 . 2 marks Y1S5 Probability - 4. P31(AS)_2021 Q5 . 5 marks Y1S5 Probability DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA | 2. | A factory buys 10% of its components from supplier A , 30% from supplier B and the rest from supplier C . It is known that 6% of the components it buys are faulty. | | |----|---|-------| | | Of the components bought from supplier A , 9% are faulty and of the components bought from supplier B , 3% are faulty. | | | | (a) Find the percentage of components bought from supplier C that are faulty. | (3) | | | A component is selected at random. | | | | (b) Explain why the event "the component was bought from supplier B" is not statistically independent from the event "the component is faulty". | | | | | (1) | ——— J | | Qu | Scheme | Marks | AO | |--------------|---|-------|-------| | 2 (a) | $[\operatorname{Let} p = \operatorname{P}(F \mid C)]$ | | | | | Tree diagram or some other method to find an equation for <i>p</i> | M1 | 2.1 | | | $0.1 \times 0.09 + 0.3 \times 0.03 + 0.6 \times p = 0.06$ | A1 | 1.1b | | | p = 0.07 i.e. $7%$ | A1 | 1.1b | | | | (3) | | | (b) | e.g. $P(B \text{ and } F) = 0.3 \times 0.03 = 0.009$ but | | | | | $P(B) \times P(F) = 0.3 \times 0.06 = 0.018$ | B1 | 2.4 | | | These are not equal so not independent | | | | | | (1) | | | | (4 marks) | | (s) | | | Notes | | | | | M1 for selecting a suitable method to find the missing probability e.g. sight of tree diagram with 0.1, 0.3, 0.6 and 0.09, 0.03, p suitably placed e.g. sight of VD with 0.009 for A∩F and B∩F and 0.6p suitably placed or attempt an equation with at least one correct numerical and one "p" product (not necessarily correct) on LHS or for sight of 0.06 – (0.009 + 0.009) (o.e. e.g. 6 – 1.8 = 4.2%) 1st A1 for a correct equation for p (May be implied by a correct answer) or for the expression (0.06 – (0.009 + 0.009)/0.6 2nd A1 for 7% (accept 0.07) Correct Ans: Provided there is no incorrect working seen award 3/3 e.g. may just see tree diagram with 0.07 for p (probably from trial and improv') | | | | (b) | for a suitable explanationmay talk about 2^{nd} branches on tree diagram and point out that $0.03 \neq 0.06$ but need some supporting calculation/words Can condone incorrect use of set notation (it is not on AS spec) provided the rest of the calculations and words are correct. | | vords | 2. The Venn diagram shows three events, A, B and C, and their associated probabilities. Events *B* and *C* are mutually exclusive. Events A and C are independent. Showing your working, find the value of x, the value of y and the value of z. | (5) | |-----| Question | Scheme | Marks | AOs | |----------|---|-------|----------| | 2 | x = 0 | B1 | 2.2a | | | P(A) = 0.1 + z + y $P(C) = 0.39 + z[+x]$ $P(A and C) = z$ | M1 | 2.1 | | | $P(A \text{ and } C) = P(A) \times P(C) \rightarrow z = (0.1 + z + y) \times (0.39 + z[+x])$ | M1 | 1.1b | | | $\left[\sum p = 1\right] \\ 0.06 + 0.3 + 0.39 + 0.1 + z + y[+x] = 1 \rightarrow [z + y[+x] = 0.15]$ | M1 | 1.1b | | | Solving (simultaneously) leading to $\underline{z = 0.13}$ $\underline{y = 0.02}$ | A1 | 1.1b | | | • | (| 5 marks) | ## **Notes** **B1:** for x = 0, may be seen on Venn diagram M1: Identifying the probabilities required for independence and at least 2 correct These must be labelled If there are no labels, then this may be implied by z = (0.1 + z + y)(0.39 + z + z), allow one numerical slip Allow e.g. $$P(A') = 0.39 + 0.30 + 0.06[+x]$$ $P(C) = 0.39 + z[+x]$ $P(A' \text{ and } C) = 0.39$ [Not on spec. but you may see use of conditional probabilities] **M1:** Use of independence equation with their labelled probabilities in terms y, z [and x] All their probabilities must be substituted into a correct formula Sight of a correct equation e.g. z = (0.1 + z + y)(0.39 + z [+x]) scores M1M1 **M1:** Using $\Sigma p = 1$ Implied by [x +] y + z = 0.15 or their x + y + z = 0.15 where x, y, and z are all probabilities or e.g. P(A) = 0.25 **A1:** both y = 0.02 and z = 0.13 1. The Venn diagram, where p is a probability, shows the 3 events A, B and C with their associated probabilities. (a) Find the value of p. **(1)** (b) Write down a pair of mutually exclusive events from A, B and C. **(1)** | Qu | Scheme | Marks | AO | |-------|---|---------------|------| | 1 (a) | [p = 1 - (0.2 + 0.2 + 0.1 + 0.2)] = 0.3 | B1 | 1.1b | | (b) | A and C are mutually exclusive. [NOT $P(A)$ and $P(C)$] | (1)
B1 (1) | 1.2 | | | | (2 marks) | | | | Notes | | | | (a) | B1 for | | | | (b) | B1 for A and C [NB $A \cap C$ or $A \cap C = \emptyset$ is B0]
If more than one case given they must <u>all</u> be correct e.g. $A \cap B$ and C | | | | 5. | Two bags, A and B, each contain balls which are either red or yellow or green. | | |----|---|-----| | | Bag A contains 4 red, 3 yellow and <i>n</i> green balls. Bag B contains 5 red, 3 yellow and 1 green ball. | | | | A ball is selected at random from bag A and placed into bag B . A ball is then selected at random from bag B and placed into bag A . | | | | The probability that bag A now contains an equal number of red, yellow and green balls is p . | | | | Given that $p > 0$, find the possible values of n and p . | (5) | 5 | Must end up with 3 of each colour or 4 of each colour | M1 | 3.1b | |----|---|------------------------|---------| | | $\underline{n=2}$ requires 1 st red and 2 nd green or red from A and green from B | M1 | 2.2a | | | P(1 st red and 2 nd green) = $\frac{4}{9} \times \frac{1}{10} = \frac{4}{90}$ or $\frac{2}{45}$ $p = \frac{2}{45}$ | A1 | 1.1b | | | $\underline{n=5}$ requires 1 st green and 2 nd yellow or green from A and yellow from B | M1 | 2.2a | | | P(1 st green and 2 nd yellow) = $\frac{5}{12} \times \frac{3}{10} = \frac{15}{120}$ or $\frac{1}{8}$ $p = \frac{1}{8}$ | A1 | 1.1b | | | | (5) | | | | | (5 marks) | | | | Notes | | | | | 1 st M1 for an overall strategy realising there are 2 options. Award when evidence of both cases (3 of each colour or 4 of each colour) seen. 2 nd M1 for $n = 2$ and attempt at 1 st red and 2 nd green May be implied by e.g. $\frac{4}{9} \times \frac{1}{9}$ 1 st A1 for $p = \frac{2}{45}$ or exact equivalent 3 rd M1 for $n = 5$ and attempt at 1 st green and 2 nd yellow | May be implied by e.g. $\frac{5}{12} \times \frac{3}{9}$ | | | | | $2^{\text{nd}} \text{ A1 for } p = \frac{1}{8} \text{ or exact equivalent}$ | | | | NB | NB If both correct values of p are found and then added (get $\frac{61}{360}$), deduct final A1 only (i.e. 4/5) | | | | | | . 1 aard | 0 . 202 | | | Grea At | twood 23 rd | Oct 202 | Scheme Qu Greg Attwood 23rd Oct 2021 Marks AO