Y1M11 XMQs and MS

(Total: 52 marks)

1. P3_Sample Q6 . 6 marks - Y1M11 Variable acceleration
2. P32(AS)_2018 Q8 . 10 marks - Y1M11 Variable acceleration
3. P32(AS)_2019 Q3 . 8 marks - Y1M11 Variable acceleration
4. P32(AS)_2020 Q3 . 9 marks - Y1M11 Variable acceleration
5. P32(AS)_2021 Q2 . 10 marks - Y1M11 Variable acceleration

6. P32(AS)_2022 Q3 . 9 marks - Y1M11 Variable acceleration

SECTION B: MECHANICS

Answer ALL questions. Write your answers in the spaces provided.

Unless otherwise indicated, whenever a numerical value of g is required, take $g = 9.8 \text{ m s}^{-2}$ and give your answer to either 2 significant figures or 3 significant figures.

6. <i>1</i>	At time <i>t</i> seconds,	where $t \geqslant 0$,	a particle F	moves so	that its	acceleration	a m s ⁻² i	s given	by
--------------------	---------------------------	-------------------------	--------------	----------	----------	--------------	------------------------------	---------	----

$$\mathbf{a} = 5t\mathbf{i} - 15t^{\frac{1}{2}}\mathbf{j}$$

When t = 0, the velocity of *P* is 20**i** m s⁻¹

Find the speed of P when t = 4

(6)

Question	Scheme	Marks	AOs
6	Integrate a w.r.t. time	M1	1.1a
	$\mathbf{v} = \frac{5t^2}{2}\mathbf{i} - 10t^{\frac{3}{2}}\mathbf{j} + \mathbf{C} \text{ (allow omission of } \mathbf{C})$	A1	1.1b
	$\mathbf{v} = \frac{5t^2}{2}\mathbf{i} - 10t^{\frac{3}{2}}\mathbf{j} + 20\mathbf{i}$	A1	1.1b
	When $t = 4$, $\mathbf{v} = 60\mathbf{i} - 80\mathbf{j}$	M1	1.1b
	Attempt to find magnitude: $\sqrt{(60^2 + 80^2)}$	M1	3.1a
	Speed = 100 m s^{-1}	A1 ft	1.1b
	·		(6 marks)

(6 marks)

Notes:

1st M1: for integrating a w.r.t. time (powers of t increasing by 1)

 $1^{st} A1$: for a correct v expression without C

 2^{nd} A1: for a correct v expression including C

 2^{nd} M1: for putting t = 4 into their v expression

 3^{rd} M1: for finding magnitude of their v

3rd A1: ft for 100 m s⁻¹, follow through on an incorrect v

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

8.	A particle, P , moves along the x -axis. At time t seconds, $t \ge 0$, the displacement, x metres, of P from the origin O , is given by $x = \frac{1}{2}t^2(t^2 - 2t + 1)$	
	(a) Find the times when P is instantaneously at rest.	
		(5)
	(b) Find the total distance travelled by P in the time interval $0 \le t \le 2$	(3)
	(c) Show that <i>P</i> will never move along the negative <i>x</i> -axis.	(2)

Question	Scheme	Marks	AOs
8(a)	Multiply out and differentiate <i>wrt</i> to time (or use of product rule i.e. must have two terms with correct structure)	M1	1.1a
	$v = 2t^3 - 3t^2 + t$	A1	1.1b
	$2t^3 - 3t^2 + t = 0$ and solve: $t(2t - 1)(t - 1) = 0$	DM1	1.1b
	$t = 0$ or $t = \frac{1}{2}$ or $t = 1$; any two	A1	1.1b
	All three	A1	1.1b
		(5)	
(b)	Find x when $t = 0$, $\frac{1}{2}$, 1 and 2: $(0, \frac{1}{32}, 0, 2)$	M1	2.1
	Distance = $\frac{1}{32} + \frac{1}{32} + 2$	M1	2.1
	$2\frac{1}{16}$ (m) oe or 2.06 or better	A1	1.1b
		(3)	
(c)	$x = \frac{1}{2}t^2(t-1)^2$	M1	3.1a
	$\frac{1}{2}$ perfect square so $x \ge 0$ i.e. never negative	A1 cso	2.4
		(2)	

(10 marks)

Notes:

(a)

M1: Must have 3 terms and at least two powers going down by 1

A1: A correct expression

DM1: Dependent on first M, for equating to zero and attempting to solve a <u>cubic</u>

A1: Any two of the three values (Two correct answers can imply a correct method)

A1: The third value

(b)

M1: For attempting to find the values of x (at least two) at their t values found in (a) or at t=2 or equivalent e.g. they may integrate their t and sub in at least two of their t values

M1: Using a correct strategy to combine their distances (must have at least 3 distances)

A1: $2\frac{1}{16}$ (m) oe or 2.06 or better

(c)

M1: Identify strategy to solve the problem such as:

- (i) writing x as $\frac{1}{2}$ × perfect square
- (ii) or using x values identified in (b).
- (iii) or using calculus i.e. identifying min points on x-t graph.
- (iv) or using *x-t* graph.

A1 cso: Fully correct explanation to show that $x \ge 0$ i.e. never negative

3. A particle, P, moves along a straight line such that at time t seconds, $t \ge 0$, the velocity of P, $v \, \text{m s}^{-1}$, is modelled as

$$v = 12 + 4t - t^2$$

Find

(a) the magnitude of the acceleration of P when P is at instantaneous rest,

(5)

(b) the distance travelled by *P* in the interval $0 \le t \le 3$

(3)

_		
_		

Question	Scheme	Marks	AOs	Notes
3(a)	$v = 12 + 4t - t^2 = 0$ and solving	M1	3.1a	Equating v to 0 and solving the quadratic If no evidence of solving, and at least one answer wrong, M0
	t = 6 (or -2)	A1	1.1b	6 but allow -2 as well at this stage
	Differentiate v wrt t	M1	1.1a	For differentiation (both powers decreasing by 1)
	$\left(a = \frac{\mathrm{d}v}{\mathrm{d}t} = \right) 4 - 2t$	A1	1.1b	Cao; only need RHS
	When $t = 6$, $a = -8$; Magnitude is 8 (m s ⁻²)	A1	1.1b	Substitute in $t = 6$ and get 8 (m s ⁻²) as the answer. Must be positive. (A0 if two answers given)
		(5)		
(b)	Integrate v wrt t	M1	3.1a	For integration (at least two powers increasing by 1)
	$(s=)12t+2t^2-\frac{1}{3}t^3(+C)$	A1	1.1b	Correct expression (ignore <i>C</i>) only need RHS Must be used in part (b)
	$t=3 \Rightarrow \text{distance} = 45 \text{ (m)}$	A1	1.1b	Correct distance. Ignore units
		(3)		
		(8 n	narks)	

3. A particle P moves along a straight line such that at time t seconds, $t \ge 0$, after leaving the point O on the line, the velocity, $v \text{m s}^{-1}$, of P is modelled as

$$v = (7 - 2t)(t + 2)$$

(a) Find the value of t at the instant when P stops accelerating.

(4)

(b) Find the distance of P from O at the instant when P changes its direction of motion.

(5)

In this question, solutions relying on calculator technology are not acceptable.

Que	stion	Scheme	Marks	AOs
3	(a)	$v = 3t - 2t^2 + 14$ and differentiate	M1	3.1a
		$a = \frac{dv}{dt} = 3 - 4t$ or $(7 - 2t) - 2(t + 2)$ using product rule	A1	1.1b
		3-4t=0 and solve for t	M1	1.1b
		$t = \frac{3}{4}$ oe	A1	1.1b
			(4)	
3	(b)	Solve problem using $v = 0$ to find a value of t $\left(t = \frac{7}{2}\right)$	M1	3.1a
		$v = 3t - 2t^2 + 14$ and integrate	M1	1.1b
		$s = \frac{3t^2}{2} - \frac{2t^3}{3} + 14t$	A1	1.1b
		Substitute $t = \frac{7}{2}$ into their <i>s</i> expression (M0 if using <i>suvat</i>)	M1	1.1b
		$s = \frac{931}{24} = 38\frac{19}{24} = 38.79166(m)$ Accept 39 or better	A1	1.1b
			(5)	
			(9 n	narks)
Note	es:			
(a)	M1	Multiply out and attempt to differentiate, with at least one power dec	creasing	
	A1	Correct expression		
	M1	Equate their a to 0 and solve for t		
	A1	cao		
(b)	M1	Uses $v = 0$ to obtain a value of t		
	M1	Attempt to integrate, with at least one power increasing		
	A1	Correct expression		
	M1	Substitute in their value of t , which must have come from using $v = 0$ have integrated)), into their s	(must
	A1	39 or better		

2. A particle *P* moves along a straight line.

At time t seconds, the velocity $v \text{ m s}^{-1}$ of P is modelled as

$$v = 10t - t^2 - k \qquad t \geqslant 0$$

where k is a constant.

(a) Find the acceleration of P at time t seconds.

(2)

The particle P is instantaneously at rest when t = 6

(b) Find the other value of t when P is instantaneously at rest.

(4)

(c) Find the total distance travelled by P in the interval $0 \le t \le 6$

(4)

Л	
л	

Que	stion	Scheme	Marks	AOs
2	(a)	Differentiate v w.r.t. t	M1	3.1a
		$a = \frac{\mathrm{d}v}{\mathrm{d}t} = 10 - 2t \text{isw}$	A1	1.1b
			(2)	
2	(b)	Solve problem using $v = 0$ when $t = 6$	M1	3.1a
		$0 = 10t - t^2 - 24$	A1	1.1b
		Solve quadratic oe to find other value of <i>t</i>	M1	1.1b
		t=4	A1	1.1b
			(4)	
2	(c)	Integrate v or -v w.r.t. t	M1	3.1a
		$5t^2 - \frac{1}{3}t^3 - 24t$	A1	1.1b
		Total distance = $-\left[5t^2 - \frac{1}{3}t^3 - 24t\right]_0^4 + \left[5t^2 - \frac{1}{3}t^3 - 24t\right]_4^6$	M1	2.1
		$\frac{116}{3}$ (m)	A1	1.1b
			(4)	
			(10 n	narks)
Note	es:			
2a	M1	Differentiate, with both powers decreasing by 1		
	A1	Correct expression		
2 b	M1	Put $t = 6$ OR use $(t-6)(t-x) = t^2$	-10t + k	oe
	A1	Correct expression (unsimplified) for v OR $v = (t-6)(t-4)$		
	M1	Put $v = 0$ to give quadratic in t and solve for other value of t		
	A1	t=4		
2c	M1	Integrate, with at least two powers increasing by 1 (allow if only two t	erms integ	rated)
	A1	Correct expression		
	M1	Complete method to find the total distance		
	A1	Accept 39(m) or better		

3. A fixed point *O* lies on a straight line.

A particle *P* moves along the straight line.

At time t seconds, $t \ge 0$, the distance, s metres, of P from O is given by

$$s = \frac{1}{3}t^3 - \frac{5}{2}t^2 + 6t$$

(a) Find the acceleration of P at each of the times when P is at instantaneous rest.

(6)

(b) Find the total distance travelled by *P* in the interval $0 \le t \le 4$

(3)

Question	Scheme	Marks	AOs
3(a)	Differentiate s wrt t	M1	3.1a
	$(v=) t^2 - 5t + 6$	A1	1.1b
	Equate their v to 0 and solve	M1	1.1b
	t=2 or 3	A1	1.1b
	Differentiate s wrt t $(v =) t^2 - 5t + 6$ Equate their v to 0 and solve $t = 2 \text{ or } 3$ $(a =) 2t - 5$ $a = 1 \text{ and } -1 \text{ (m s}^{-2}) \text{ isw (A0 if extras)}$ A1 (6) At $t = t$	2.1	
		1.1b	
(b)	Correct values are $\left(s_2 = \frac{14}{3}, s_3 = \frac{9}{2} \text{ and } s_4 = \frac{16}{3}\right)$ Could be implied by correct values for: s_2 , $(s_3 - s_2)$ and $(s_4 - s_3)$ which are $\frac{14}{3}$, $(-\frac{1}{6})$ and $\frac{5}{6}$ Total distance travelled $= s_2 + (s_2 - s_3) + s_4 - s_3$ OR $s_2 - (s_3 - s_2) + s_4 - s_3$ OR $\left[\frac{1}{3}t^3 - \frac{5}{2}t^2 + 6t\right]_0^2 - \left[\frac{1}{3}t^3 - \frac{5}{2}t^2 + 6t\right]_2^3 + \left[\frac{1}{3}t^3 - \frac{5}{2}t^2 + 6t\right]_3^4$ OR $\frac{14}{3}$ - $(-\frac{1}{6})$ + $\frac{5}{6}$		2.1
	$5\frac{2}{3}$ oe (m) Accept 5.7 or better	A1	1.1b
		(3)	
		(9 n	narks)

3a	M1	Differentiate, with at least 2 powers decreasing by 1
	A1	Correct expression
	M1	Must have attempted to differentiate s to find v and be solving a 3 term quadratic
	A1	Both values needed
	B1 ft	Follow their <i>v</i> (must be differentiating)

	A1	cao
3b	DM 1	This mark is dependent on the 2^{nd} M1 in part (a) and their t values are between 0 and 4. Clear attempt to find all three s values (may integrate their v incorrectly) N.B. No penalty for extra values.
	M1	Complete method using their s values Do NOT condone sign errors.
	A1	Any equivalent fraction, 5.7 or better.
		S.C. Correct answer, with no working, scores all 3 marks, since $\int_{0}^{4} t^2 - 5t + 6 dt$ entered on a calculator will give $\frac{17}{3}$