Fd1Ch7 XMQs and MS

(Total: 121 marks)

1.	FD1_Sample	Q5	•	15	marks	-	FD1ch7	The	simplex	algorithm
2.	FD1_Sample	Q7		12	marks	-	FD1ch7	The	simplex	algorithm
3.	FD1_Specimen	Q5	•	16	marks	-	FD1ch7	The	simplex	algorithm
4.	FD1_Specimen	Q7	•	10	marks	-	FD1ch7	The	simplex	algorithm
5.	FD1_2019	Q6	•	12	marks	-	FD1ch7	The	simplex	algorithm
6.	FD1_2020	Q7	•	17	marks	-	FD1ch7	The	simplex	algorithm
7.	FD1_2021	Q8	•	18	marks	-	FD1ch7	The	simplex	algorithm
8.	FD1_2022	Q4	•	6	marks	-	FD1ch7	The	simplex	algorithm
9.	FD1_2022	Q7		15	marks	_	FD1ch7	The	simplex	algorithm

5. A garden centre makes hanging baskets to sell to its customers. Three types of hanging basket are made, *Sunshine*, *Drama* and *Peaceful*. The plants used are categorised as *Impact*, *Flowering* or *Trailing*.

Each *Sunshine* basket contains 2 *Impact* plants, 4 *Flowering* plants and 3 *Trailing* plants. Each *Drama* basket contains 3 *Impact* plants, 2 *Flowering* plants and 4 *Trailing* plants. Each *Peaceful* basket contains 1 *Impact* plant, 3 *Flowering* plants and 2 *Trailing* plants.

The garden centre can use at most 80 *Impact* plants, at most 140 *Flowering* plants and at most 96 *Trailing* plants each day.

The profit on *Sunshine*, *Drama* and *Peaceful* baskets are £12, £20 and £16 respectively. The garden centre wishes to maximise its profit.

Let *x*, *y* and *z* be the number of *Sunshine*, *Drama* and *Peaceful* baskets respectively, produced each day.

(a) Formulate this situation as a linear programming problem, giving your constraints as inequalities.

(5)

(b) State the further restriction that applies to the values of x, y and z in this context.

(1)

b.v.	x	у	Z	r	S	t	Value
r	$-\frac{1}{4}$	0	$-\frac{1}{2}$	1	0	$-\frac{3}{4}$	8
S	$\frac{5}{2}$	0	2	0	1	$-\frac{1}{2}$	92
у	$\frac{3}{4}$	1	$\frac{1}{2}$	0	0	$\frac{1}{4}$	24
Р	3	0	-6	0	0	5	480

The Simplex algorithm is used to solve this problem. After one iteration, the tableau is

- (c) State the variable that was increased in the first iteration. Justify your answer.
- (2)

(d) Determine how many plants in total are being used after only one iteration of the Simplex algorithm.

(1)

(e) Explain why for a second iteration of the Simplex algorithm the 2 in the *z* column is the pivot value.

(2)

After a second iteration, the tableau is

b.v.	x	у	Z	r	S	t	Value
r	$\frac{3}{8}$	0	0	1	$\frac{1}{4}$	$-\frac{7}{8}$	31
S	$\frac{5}{4}$	0	1	0	$\frac{1}{2}$	$-\frac{1}{4}$	46
у	$\frac{1}{8}$	1	0	0	$-\frac{1}{4}$	$\frac{3}{8}$	1
Р	$\frac{21}{2}$	0	0	0	3	$\frac{7}{2}$	756

(f) Use algebra to explain why this tableau is optimal.

(g) State the optimal number of each type of basket that should be made.

The manager of the garden centre is able to increase the number of *Impact* plants available each day from 80 to 100. She wants to know if this would increase her profit.

(h) Use your final tableau to determine the effect of this increase. (You should not carry out any further calculations.)

(2)

(1)

(1)

(Total for Question 5 is 15 marks)

Question	Scheme	Marks	AOs
5(a)	Maximise $P = 12x + 20y + 16z$	B1	3.3
	$2x + 3y + z \le 80$	M1	3.3
	Subject to $4x + 2y + 3z \le 140$	A1	1.1b
	$3x+4y+2z \le 96$	A1	1.1b
	$x, y, z \ge 0$	B1	3.3
		(5)	
(b)	The values must all be integers	B1	3.3
		(1)	
(c)	Variable <i>y</i> entered the basic variable column	M1	2.4
	so y was increased first	A1	2.2a
		(2)	
(d)	(80+140+96) - (8+92) = 216 plants	B1	3.2a
		(1)	
(e)	The next pivot must come from a column which has a negative value in the objective row so therefore the pivot must come from column z	M1	2.4
	The pivot must be positive and the least of $92/2 = 46$ and $24/0.5 = 48$ so the pivot must be the 2 (from column <i>z</i>)	A1	2.2a
		(2)	
(f)	P + 10.5x + 3s + 3.5t = 756 so increasing x, s or t will decrease profit	B1	2.4
		(1)	
(g)	Make 1 Drama basket and 46 Peaceful baskets	B1	2.2a
		(1)	
(h)	The slack variable, <i>r</i> , associated with this type of plant, is currently	M1	3.1b
	at 31. Increasing the number of <i>Impact</i> plants by a further 20 would have no effect	A1	3.2a
		(2)	
		(15 m	narks)

Quest	ion 5 notes:
(a)	
B1:	Correct objective function/expression (accept in pence rather than pounds e.g. $1200x +$
	2000y + 1600z)
M1:	Correct coefficients and correct right-hand side for at least one inequality – accept any
	inequality or equals
A1:	Two correct (non-trivial) inequalities
A1:	All three non-trivial inequalities correct
B1:	$x, y, z \ge 0$
(b)	
B1:	cao
(c)	
M1:	Correct reasoning that y has become a basic variable
A1:	Correct deduction that y was therefore increased first
(d)	
B1 :	cao
(e)	
M1:	Correct reasoning given that the pivot value must come from column z
A1:	Correctly deduce (from correctly stated calculations) that the pivot value is the 2 in
	column z
(f)	
B1:	States correct objective function and mention of increasing <i>x</i> , <i>s</i> or <i>t</i> will decrease profit
(g)	
B1:	cao - in context so not in terms of y and z
(h)	
M1:	Identifies the slack variable <i>r</i> and its current value of 31
A1:	Correct interpretation that increasing the number of Impact plants would have no effect

7. A linear programming problem in x, y and z is described as follows.

Maximise P = 3x + 2y + 2zsubject to $2x + 2y + z \le 25$ $x + 4y \le 15$ $x \ge 3$

(a) Explain why the Simplex algorithm cannot be used to solve this linear programming problem.

(1)

The big-M method is to be used to solve this linear programming problem.

(b) Define, in this context, what M represents. You must use correct mathematical language in your answer.

(1)

b.v.	x	У	Z	<i>s</i> ₁	S ₂	S ₃	<i>t</i> ₁	Value
<i>s</i> ₁	2	2	1	1	0	0	0	25
S ₂	1	4	0	0	1	0	0	15
<i>t</i> ₁	1	0	0	0	0	-1	1	3
Р	-(3 + M)	-2	-2	0	0	М	0	-3 <i>M</i>

The initial tableau for a big-M solution to the problem is shown below.

(c) Explain clearly how the equation represented in the b.v. t_1 row was derived.

(1)

(d) Show how the equation represented in the b.v. *P* row was derived.

(2)

The tableau obtained from the first iteration of the big-M method is shown below.

b.v.	x	у	Z	<i>s</i> ₁	s ₂	s ₃	<i>t</i> ₁	Value
S ₁	0	2	1	1	0	2	-2	19
S ₂	0	4	0	0	1	1	-1	12
x	1	0	0	0	0	-1	1	3
Р	0	-2	-2	0	0	-3	3 + M	9

(e) Solve the linear programming problem, starting from this second tableau. You must

- give a detailed explanation of your method by clearly stating the row operations you use and
- state the solution by deducing the final values of *P*, *x*, *y* and *z*.

(7)

(Total for Question 7 is 12 marks)

	P	-	-	ſ	
	Ŋ	-	ð	r	
	à	ē	5	ľ	
	(J	ŀ	
		2	٣		
	÷			ċ	
	5	2	2	١,	
	ş	-	-	I,	
	1	~	٩	Ŀ	
	١	-	ð	I,	
	_		1	L	
	7		٦	E	
	ń	e	1	P	
	ŝ	2	3	1	
	2	7	-	r	
	-	7	-	ŀ	
	p	2	ų	١.	
	ų			Ę,	
			4	ŀ	
			1	Ļ	
	R	٦	-	L	
	ę	2	1	ł.	
	÷	-	÷	ĉ	
	Ē	÷	÷	ĩ	
	2	ð	2	1	
	-	-	-	Þ	
			4	ŕ	
	=	-	۲	ŀ	
	ń	÷	i	ř.	
	5			5	
	7	_	_	١,	
	(1		L	
	2	~	2	١.	
	ń	÷.	4		
	2		2	F,	
	2	2		í	
	2		3	ĵ.	
	2	2	2		
	ſ	1	٦	ŀ	
	ŝ	2	2	•	
	7			ŀ	
	ę	-	1		

DO NOT WRITE IN THIS AREA

Question 7 continued

b.v.	x	y	Z	<i>s</i> ₁	s ₂	<i>S</i> ₃	<i>t</i> ₁	Value	Row Ops
Р									

b.v.	x	у	Z	s ₁	s ₂	s ₃	<i>t</i> ₁	Value	Row Ops
Р									

(Total for Question 7 is 12 marks)

Question						S	Scher	ne				Marks	AOs
7(a)	Simpl	ex c	an o	nly w	ork v	with \leq	const	raint	S			B1	3.5b
												(1)	
(b)	M is a	ın ar	bitra	ry la	rge re	al num	nber					B1	2.5
												(1)	
(c)	$x \ge 3$ artific	\Rightarrow ial v	$x - s_3$	$t_1 + t_1 =$	= 3 W	where s_3	is a	surp	lus va	ariable ar	nd t_1 is an	B1	2.4
												(1)	
(d)	Let P $\therefore P =$ = (3 + $\Rightarrow P -$	x = 3x + 3x + M	x + 2 y + 2y + x + 2 y + M	y + 2z + 2z - 2y + 2z - 2y + 2z - 2y + 2z - 2y + 2z - 2z	z - M $- M (3)$ $z - M$ $y - 2$	$\begin{aligned} t_1 & (whe) \\ 3 - x + y \\ 4s_3 - 3M \\ z + Ms_3 \end{aligned}$	ere M s_3) M $_3 = -3$	is a M	an ar	bitrary la	rge number)	M1 A1	2.1 1.1b
(e)	b.v.	x	у	Z		S ₁	<i>s</i> ₂	<i>s</i> ₃	t_1	Value	Row Ops	M1	1.1b
	<i>s</i> ₃	0	1	1/2	, 2	1/2	0	1	-1	19/2	$r_1 = (1/2)R_1$	A 1	1.11
	<i>s</i> ₂	0	3	-1	/2	-1/2	1	0	0	5/2	$R_2 - r_1$	A1 A1	1.10 1.1b
	x	1	1	1/2	, 2	1/2	0	0	0	25/2	$R_3 + r_1$		
	Р	0	1	-1	/2	3/2	0	0	М	75/2	$R_4 + 3r_1$		
	b.v.	x	У	Z	<i>S</i> ₁	<i>s</i> ₂	<i>s</i> ₃	l	4 1	Value	Row Ops		
	z	0	2	1	1	0	2	_	-2	19	$r_1 = 2R_1$	M1	1.1b
	<i>s</i> ₂	0	4	0	0	1 1 -1 12 R_2				12	$R_2 + (1/2)r_1$	A1	1.1b
	x	1	0	0	0	0	-1		1	3	$R_3 - (1/2)r_1$		
	Р	0	2	0	2	0 1 $M-1$ 47 $R_4 + (1/2)r_1$						B1	2.4
	P = 47, x = 3, y = 0, z = 19									B1ft	1.1b		
												(7)	
												(12 n	narks)

Quest	Question 7 notes:								
(a) B1:	Correctly states the limitation of the Simplex model – Simplex involves iterations which allow movement from one vertex in the feasible region to another vertex (in the feasible region). If all constraints are of the form \leq this means that the origin is always a feasible solution and therefore can act as the initial starting point for the problem. However, the constraint $x \geq 3$ means that the origin is not feasible and so the algorithm is unable to begin.								
(b) B1:	cao including the correct mathematical language (must include 'arbitrary', 'large' and 'real')								
(c) (B1:	Correctly states both the inequality $x \ge 3$ and the equation $x - s_3 + t_1 = 3$ together with an explanation of the meaning behind the variables s_3 and t_1								
(d) M1: A1:	$P = 3x + 2y + 2z - Mt_1$ and substitutes their expression for t_1 Correct mathematical argument including sufficient detail to allow the line of reasoning to be followed to the correct conclusion – dependent on previous B mark in (c)								
(e) M1: A1: A1:	Correct pivot located, attempt to divide row. If negative value used then no marks Pivot row correct (including change of b.v.) and row operations used at least once, one of columns y, z, s_1, t_1 or Value correct cao for values (ignore b.v. column and Row Ops)								
M1:	Pivot row consistent (following their previous table) including change of b.v. and row operations used at least once, one of columns y, s_1, s_3, t_1 or Value correct								
A1: B1: B1ft:	cao on final table (ignore Row Ops) The correct Row Operations explained either in terms of the 'old' or 'new' pivot rows Correctly states the final values of P , x , y and z from their correct corresponding rows of the final table								

Dale roll	e is planning top desk and	a producti writing de	on run of th esk.	ree types	of desk. I	the three ty	pes ure ree	tern desk,	
In to roll	otal, Dale has top desk requ	$400 \mathrm{m^2}$ of the three terms $5 \mathrm{m^2}$,	f wood avail and each w	able; each riting desl	i lectern de c requires	esk requires 8 m²	3 m^2 , each	1	
In to roll	otal, Dale has top desk requ	350 hours aires 6 hou	s available; urs, and each	each lecte	rn desk red lesk requin	quires 3 ho es 10 hour	urs, each s.		
Onc stora and	ce complete, t rage space ava each writing	he desks n iilable; ead desk requ	need to be st ch lectern de ires 1.25 m ³	ored in a sesk require	warehouse es 1 m ³ , ea	•. The ware ch roll top	ehouse has desk requir	75 m ³ of res 1.5 m ³	
The and	profit on eac the profit on	h lectern c each writi	desk sold is ing desk sole	£40, the p d is £65	profit on ea	ich roll top	desk sold	is £50	
Dale	e wants to ma	ximise his	s profit.						
Let : resp	x, y and z be bectively during	the numbers	er of lectern duction run.	desks, rol	ll top desk	s and writin	ng desks m	ade	
(a)]	Formulate thi	s situation	n as a linear	programn	ning proble	em, giving	your const	raints as	
İ	inequalities.							(4	n
(b)	Complete the	initial tab	leau in the	answer bo	ok for this	linear pro	romming	nrohlem	")
(0)	Complete the	iiiitiai tau	fieau in the a	allswei Do	ok for this	mear prog	granning	(2	2)
(c) '	Taking the m	ost negativ	ve number i	n the prof	it row to it	ndicate the	nivot colur	nn	
(c) '	Taking the more of	ost negativ complete i	ve number in teration of t	n the profi	it row to in ex algorith	ndicate the m. Give ar	pivot colur 1 explanatio	nn, on of the	
(c) ⁷	Taking the mapperform one of method by closed	ost negativ complete i early statin	ve number in teration of t ng the row o	n the profi he Simple operations	it row to in ex algorithe you use.	ndicate the m. Give ar	pivot colur 1 explanatio	nn, on of the	
(c) ']	Taking the maperform one of method by clo	ost negativ complete i early statin	ve number in teration of t ng the row c	n the profi he Simple operations	it row to in ex algorith: you use.	ndicate the m. Give ar	pivot colur 1 explanatio	nn, on of the (4	4)
(c)	Taking the m perform one of method by closer er a second ite	ost negative complete i early station eration, the	ve number in teration of t ng the row c e exact valu	n the profi the Simple operations es in the t	it row to in ex algorith you use. ableau are	ndicate the m. Give ar	pivot colur 1 explanatio	nn, on of the (4	ł)
(c) ^r	Taking the m perform one of method by closer er a second ito b.v.	ost negative complete i early statine eration, the	ve number in teration of t ng the row o e exact valu	n the profi the Simple operations es in the t	it row to in ex algorithe you use. ableau are	ndicate the m. Give ar	pivot colur n explanatio	nn, on of the (4 Value	ł)
(c) ⁷ 1 Afte	Taking the maperform one of method by closer a second ite $b.v.$	ost negative complete i early statine eration, the x 0	ve number in teration of t ng the row of e exact valu y -0.52	n the profit the Simple operations es in the t $\frac{z}{0}$	it row to in ex algorithm you use. ableau are s_1 1	ndicate the m. Give an s_2 -0.68	pivot colur n explanatio s_3 -0.96	nn, on of the (4 Value 90	ł)
(c) / l Afte	Taking the maperform one of method by closer a second ite $\frac{b.v.}{s_1}$	ost negative complete i early statine eration, the x 0 0	ve number in teration of t ing the row of e exact valu y -0.52 0.24	n the profit the Simple operations es in the t $\frac{z}{0}$ 1	it row to in ex algorithe you use. ableau are $\frac{s_1}{1}$ 0	$\frac{s_2}{-0.68}$	pivot colur n explanatio s_3 -0.96 -0.48	nn, on of the (4 Value 90 20	1)
(c) ⁷	Taking the maperform one of method by closer a second iter $\frac{b.v.}{s_1}$	ost negative complete i early statine eration, the x 0 0 1	ye number in teration of t ing the row of e exact valuy -0.52 0.24 1.2	n the profi- the Simple operations es in the t $\frac{z}{0}$ $\frac{1}{0}$	it row to in ex algorithm you use. ableau are s_1 1 0 0	$\frac{s_2}{-0.68}$ 0.16 -0.2	pivot colur n explanatio s_3 -0.96 -0.48 1.6	nn, on of the (4 <u>Value</u> 90 20 50	ł)
(c)	Taking the miperform one of method by closer a second iter $\frac{b.v.}{s_1}$	ost negative complete i early statine eration, the x 0 0 1 0 1 0	ye number in teration of t ing the row of e exact valuy -0.52 0.24 1.2 13.6	n the profine $rate = 1$ in the Simple operations es in the the z of 1 of 0 of 1 of 0 of	it row to in ex algorithm you use. ableau are $\frac{s_1}{1}$ 0 0 0	s2 -0.68 0.16 -0.2 2.4	pivot colur n explanatio s_3 -0.96 -0.48 1.6 32.8	nn, on of the (4 <u>Value</u> 90 20 50 3300	4)
(c) ⁷	Taking the method by closermethod by closerer a second ite $b.v.$ s_1 z x P	ost negative complete i early statine eration, the x 0 0 1 0 1 0	ye number in teration of t ing the row of e exact valuey -0.52 0.24 1.2 13.6	n the profit the Simple operations es in the t z 0 1 0 0 0	it row to in ex algorithm you use. ableau are $\frac{s_1}{1}$ 0 0 0	s_2 -0.68 0.16 -0.2 2.4	pivot colur n explanatio s_3 -0.96 -0.48 1.6 32.8	nn, on of the (4 <u>Value</u> 90 20 50 3300	1)
(c) ⁷ J Afte	Taking the miperform one of method by closer a second iter $\frac{b.v.}{s_1}$	ost negative complete i early statine eration, the x 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0	ye number in teration of t ing the row of e exact valuy -0.52 0.24 1.2 13.6 how you kn	n the profit the Simple operations es in the t z 0 1 0 0 0 0 ow that the	it row to in ex algorithm you use. ableau are $\frac{s_1}{1}$ 0 0 0 0 its tableau	ndicate the m. Give an s_2 -0.68 0.16 -0.2 2.4 is optimal.	pivot colur n explanation s_3 -0.96 -0.48 1.6 32.8	nn, on of the (4 <u>Value</u> 90 20 50 3300	1)
(c) 7 1 Afte (d) 1	Taking the maperform one of method by closer a second ite b.v. s_1 z x P Use algebra t	ost negative complete i early statine eration, the x 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ve number in iteration of t ing the row of e exact valu y -0.52 0.24 1.2 13.6 how you kn	n the profit the Simple operations es in the t z 0 1 0 0 ow that the	it row to in ex algorithm you use. ableau are $\frac{s_1}{1}$ 0 0 0 is tableau	ndicate the m. Give an s_2 -0.68 0.16 -0.2 2.4 is optimal.	pivot colur n explanatio $\frac{s_3}{-0.96}$ -0.48 1.6 32.8	nn, on of the (4 <u>Value</u> 90 20 50 3300	ł) [)
(c) 7 1 Afte (d) 1 (e) (Taking the m perform one of method by closer er a second ite b.v. s_1 z x P Use algebra t (i) State the closer	ost negative complete i early statine eration, the x 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	ve number in teration of t ing the row of e exact valu y -0.52 0.24 1.2 13.6 how you kn umber of eac	n the profi- the Simple operations es in the t z 0 1 0 0 ow that th ch type of	it row to in ex algorithm you use. ableau are $\frac{s_1}{1}$ 0 0 is tableau desk that	ndicate the m. Give an s_2 -0.68 0.16 -0.2 2.4 is optimal. should be n	pivot colur n explanation s_3 -0.96 -0.48 1.6 32.8 made.	nn, on of the (4 <u>Value</u> 90 20 50 3300 (1	ł) [)
(c) / 1 Afte (d) 1 (e) (Taking the miperform one of method by closer a second iter $\frac{b.v.}{s_1}$ $\frac{s_1}{z}$ Use algebra t (i) State the second state st	ost negative complete i early statine eration, the x 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0	ve number in teration of t ing the row of e exact value y -0.52 0.24 1.2 13.6 how you kn umber of each total profit.	n the profine simple operations es in the t $\frac{z}{0}$ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	it row to in ex algorithm you use. ableau are $\frac{s_1}{1}$ 0 0 0 its tableau	ndicate the m. Give an s_2 -0.68 0.16 -0.2 2.4 is optimal. should be r	pivot colur n explanation s_3 -0.96 -0.48 1.6 32.8 made.	nn, on of the (4 <u>Value</u> 90 20 50 3300 (1	ł) L)
(c) ⁷ 1 Afte (d) ¹ (e) ((f) 1	Taking the miperform one of method by closer a second iter $\frac{b.v.}{s_1}$ $\frac{s_1}{z}$ Use algebra t (i) State the second iter $\frac{c}{c}$ (ii) State the second iter $\frac{c}{c}$ (iii) State the second s	ost negative complete i early statine eration, the x 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0	ve number in iteration of t ing the row of e exact valu y -0.52 0.24 1.2 13.6 how you kn umber of eac total profit.	n the profi- the Simple operations es in the t z 0 1 0 0 0 ow that th ch type of	it row to in ex algorithm you use. ableau are $\frac{s_1}{1}$ 0 0 0 is tableau desk that	ndicate the m. Give an s_2 -0.68 0.16 -0.2 2.4 is optimal. should be r	pivot colur n explanation $\frac{s_3}{-0.96}$ -0.48 1.6 32.8 nade.	nn, on of the (4 <u>Value</u> 90 20 50 3300 (1 (2	ŧ) [) 2)
(c) 7 1 Afte (d) 1 (e) ((f) 1	Taking the m perform one of method by class er a second ite b.v. s_1 z x P Use algebra t (i) State the Explain, in co	ost negative complete i early statine eration, the x 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	ve number in iteration of t ing the row of e exact valu y -0.52 0.24 1.2 13.6 how you kn umber of each total profit. meaning of	n the profine $rac{1}{1}$ in the Simple operations es in the the z of 1 of 0 ow that the child type of $rac{1}{1}$ for the 90 in $rac{1}{1}$ of $rac{$	it row to in ex algorithm you use. ableau are $\frac{s_1}{1}$ $\frac{1}{0}$ 0 0 is tableau desk that the value	ndicate the m. Give an s_2 -0.68 0.16 -0.2 2.4 is optimal. should be r column.	pivot colur n explanatio $\frac{s_3}{-0.96}$ -0.48 1.6 32.8 made.	nn, on of the (4 <u>Value</u> 90 20 50 3300 (1 (2 (2) (2)	4) 1) 2) 2)
(c) 7 1 1 Afte (d) 1 (e) ((f) 1 (g) (Taking the m perform one of method by closed er a second ite b.v. s_1 z x P Use algebra t (i) State the second Give a reason	ost negative complete i early statine eration, the x 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	ve number in teration of t ing the row of e exact valu y -0.52 0.24 1.2 13.6 how you kn umber of each total profit. meaning of profit may h	n the profi- the Simple operations es in the t $\frac{z}{0}$ $\frac{0}{1}$ 0 ow that th ch type of f the 90 in pe less tha	it row to in ex algorithm you use. ableau are $\frac{s_1}{1}$ $\frac{1}{0}$ 0 0 its tableau 'desk that the value n the value	ndicate the m. Give an s_2 -0.68 0.16 -0.2 2.4 is optimal. should be n column.	pivot colur n explanation $\frac{s_3}{-0.96}$ -0.48 1.6 32.8 nade.	nn, on of the (4 <u>Value</u> 90 20 50 3300 (1 (2 (2)	4) 1) 2) 2)
(c) ⁷ 1 Afte (d) ¹ (e) ((f) ¹ (g) ⁰	Taking the miperform one of method by closer a second iter $\frac{b.v.}{s_1}$ $\frac{s_1}{z}$ $\frac{x}{P}$ Use algebra t (i) State the second iter (ii) State the second state stat	ost negative complete i early statine eration, the x 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	ve number in teration of t ing the row of e exact valu y -0.52 0.24 1.2 13.6 how you kn umber of each total profit. meaning of profit may b	n the profi- the Simple operations es in the t $\frac{z}{0}$ 0 1 0 0 0 ow that th ch type of f the 90 in pe less tha	it row to in ex algorithm you use. ableau are $\frac{s_1}{1}$ 1 0 0 0 0 its tableau desk that the value n the value	ndicate the m. Give an s_2 -0.68 0.16 -0.2 2.4 is optimal. should be r column. e stated in (pivot colur n explanation $\frac{s_3}{-0.96}$ -0.48 1.6 32.8 made.	nn, on of the (4 <u>Value</u> 90 20 50 3300 (1 (2 (2 (2) (1)	4) [) 2) [)
(c) 7 1 Afte (d) 1 (e) ((f) 1 (g) 0	Taking the miperform one of method by closer a second iter $\frac{b.v.}{s_1}$ $\frac{s_1}{z}$ Use algebra t (i) State the second iter (ii) State the second	ost negative complete i early statine eration, the x 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0	ve number in iteration of t ing the row of e exact valu y -0.52 0.24 1.2 13.6 how you kn umber of each total profit. meaning of profit may b	n the profi- the Simple operations es in the t z 0 1 0 0 0 ow that th ch type of f the 90 in pe less tha	it row to in ex algorithm you use. ableau are $\frac{s_1}{1}$ $\frac{1}{0}$ 0 0 is tableau desk that the value n the value	ndicate the m. Give an s_2 -0.68 0.16 -0.2 2.4 is optimal. should be r column. e stated in (pivot column explanation s_3 -0.96 -0.48 1.6 32.8 made. (e)(ii). uestion 5 i	nn, on of the (4 Value 90 20 50 3300 (1 (2 (2 (2) (1) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	4) 1) 2) 2) 1)
(c) 7 1 Afte (d) 1 (e) ((f) 1 (g) (Taking the m perform one of method by closed er a second ite $\boxed{b.v.}$ $\boxed{s_1}$ \boxed{z} \boxed{x} \boxed{P} Use algebra t (i) State the second Give a reason	ost negative complete i early statine eration, the x 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	ve number in teration of t ing the row of e exact valu y -0.52 0.24 1.2 13.6 how you kn umber of each total profit. meaning of profit may b	n the profi- the Simple operations es in the t $\frac{z}{0}$ $\frac{0}{1}$ 0 0 ow that th ch type of f the 90 in pe less tha	it row to in ex algorithm you use. ableau are $\frac{s_1}{1}$ 0 0 0 is tableau 'desk that the value n the value (1	s s_2 -0.68 0.16 -0.2 2.4 is optimal.should be rcolumn.e stated in (Cotal for Q	pivot colur n explanation s_3 -0.96 -0.48 1.6 32.8 nade. (e)(ii). uestion 5 i	nn, on of the (4 Value 90 20 50 3300 (1 (2 (2) (2) (2) (2) (2) (2) (2) (2) (2)	4) 1) 2) 1) 5)
(c) / 1 Afte (d) 1 (e) ((f) 1 (g) (5	Taking the miperform one of method by closer a second iter $\frac{b.v.}{s_1}$ $\frac{s_1}{z}$ $\frac{x}{p}$ Use algebra t (i) State the second field of the second seco	ost negative complete i early statine eration, the x 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0	ve number in teration of t ing the row of e exact valu y -0.52 0.24 1.2 13.6 how you kn umber of each total profit. meaning of profit may b	n the profi- the Simple operations es in the t $\frac{z}{0}$ 0 1 0 0 0 ow that th ch type of f the 90 in pe less tha	it row to in ex algorithm you use. ableau are $\frac{s_1}{1}$ 0 0 0 its tableau desk that the value n the value (1	hdicate the m. Give an s_2 -0.68 0.16 -0.2 2.4 is optimal. should be r column. e stated in (Cotal for Q	pivot colurn explanation s_3 -0.96 -0.48 1.6 32.8 nade. (e)(ii). uestion 5 i	nn, on of the (4 Value 90 20 50 3300 (1 (2 (2 (2) (2) (2) (2) (2) (2) (2) (2) (4) 1) 2) 1) 56

(b)								
b.v.	x	у	Z	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	Value	
							400	
							350	
							75	
Р								
(c)			-	-		-		
b.v.	x	у	Z	<i>s</i> ₁	s ₂	s ₃	Value	Row Ops
Р								
						1		
b.v.	<i>x</i>	У	Z	s ₁	s ₂	<i>S</i> ₃	Value	Row Ops
Р								

5.

DO NOT WRITE IN THIS AREA

Questi on					Schei	ne			Marks	AOs
5(a)	Maximise P =	=40x+50	0y+	65 <i>z</i>					B1	2.5
	3x Subject to $3x$ $r + 3x$	x + 5y + 8 + 6y + 10 1 5y + 1	$z \le 2$ $z \le 2$ $z \le 2$	400 350 < 75					M1	3.3
		<i>x</i> , <i>y</i> , <i>z</i>	≥ 0	_ /0					B1	3.3
									(4)	
(b)	b.v. x	у	2	ζ.	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	Value		
	s_1 3	5	1	3	1	0	0	400	M1	3.4
	$s_2 = 3$	0	1.	0 25	0	0	1	75	A1	1.1b
	P -40	-50	-(55	0	0	0	0		
									(2)	
(c)	h y y	v			_		Value	Pour Ong		2.1
	$s_{\rm c} = 0.6$	0.2	$\frac{z}{0}$	$\frac{s_1}{1}$	-0.8	$\frac{s_3}{0}$	120	$R_{\rm c} = r - 8R_{\rm c}$		2.1
	z 0.3	0.6	1	0	0.1	0	35	$R_2 = 0.1r_2$	A1ft	1.1b
	<i>s</i> ₃ 0.625	0.75	0	0	-0.12	25 1	31.25	$R_3 = r_3 - 1.25R_2$	A1	1.1b
	P -20.5	-11	0	0	6.5	0	2275	$R_4 = r_4 + 65R_2$		
									Blft	2.4
	D + 12.6 + 2	4	9 -	_ 22((4)	
(d)	P + 13.0y + 2.5 profit	$+s_2 + 32$.	os ₃ =	= 330		licreasi	$1g y, s_2$ of	s ₃ will decrease	B1	2.4
									(1)	
(e)	(i) Make 50 le	ctern des	sks, ž	20 w	riting o	lesks a	nd no roll	top desks	B1	3.2a
	(ii) £3300								B1	1.1b
									(2)	
(f)	The 90 is the v constraint $3x$ -	value of $1 + 5y + 8z$	the s ≤ 40	lack)0	variab	le s_1 w	hich come	es from the	B1	2.4
	Indicating that	there is	90 n	n^2 of	wood	still ava	ailable		B1	3.2a
									(2)	

(g)	e.g. there is no guarantee that all the desks will be sold	B1	3.5b
		(1)	
		(16 n	narks)
Notes:			
(a)			
B1: Corr 6500 <i>z</i>) to	ect objective function/expression (accept in pence rather than pounds e.g. 40 ogether with 'maximise'	000x + 500	00y +
M1: Cor inequalit	rect coefficients and correct right-hand side for at least one inequality – according or equals	ept any	
A1: All	hree correct (non-trivial) inequalities		
B1: <i>x</i> , <i>y</i> ,	$z \ge 0$		
(b)			
M1: Cor sign/num	structing all four rows including slack variables with at least one negative in nerical slips)	n P row (a	llow
A1: All t	Four rows correct		
(c)			
M1: Cor	rect pivot located, attempt to divide row		
A1ft: Piv columns	Not row correct (including change of b.v.) and row operations used at least o x, y, s_2 or Value correct	nce, one o	f
A1: Cao	for values (ignore b.v. column and Row Ops)		
B1ft: Th	e correct Row Operations (on the ft) explained either in terms of the 'old' or	r 'new' piv	/ot
rows			
(d)		C*	
B1: State	es correct objective function and mention of increasing y, s_2 or s_3 will decre	ase profit	
(e)(i)			
B1: Cao	- in context so not in terms of x, y and z		
(ii) B1: (Cao		
(I) D1 . Dec.	against that a 00 and is lighted to the wood constraint		
	Since $s_1 = 90$ and is initial to the wood constraint		
B1: Eval	uates this value in context (so must see both units and mention of 'wood')		
(g) B1: Cao	– any suitable limitation to the solution in context		

S	6	1	2	9	9	А	0	2	0	2	0	

b.v.					Value
b.v.					Value
b.v.					Value
b.v.					Value
b.v.					Value
b.v.					Value

Questi on					Scl	heme					Marks	AOs
7	Object	ive line	$e \Rightarrow e.g$	P-3x	x - 4y =	0					B1	3.4
	$\begin{vmatrix} y \le 10 \\ x \ge 4 \end{vmatrix}$										B1	3.4
	Line th	nrough		M1	1.1b							
	Line th	nrough	(5, 0) at	nd (10,	10) is	y - 10 =	= 2(x-1)	10)			M1	1.1b
	2x-y	≤10 ⇒	$\rightarrow 2x - y$	$s + s_1 = 1$.0						M1	2.1
	$y \le 10$ $x \ge 4 =$ $3x + 2$	$\Rightarrow y + \\ \Rightarrow x - s_3 \\ y \ge 24 = $	$s_2 = 10$ $a_3 + a_1 = 3x + 3x + 3x = 3x + 3x + 3x = 3x + 3x +$	4 $2y - s_4$	$+a_2 = 2$	24					A1ft A1	1.1b 1.1b
	$a_1 + a_2$ $\Rightarrow A =$ $\Rightarrow A -$	$= 4 - x$ $= -(a_1 + a_2)$ $= 4x - 2z$	$(x + s_3 + 2) = 4$ $(y + s_3 + 2) = 4$	$24 + s_4 - 4x + 2y$ $s_4 = -2$	$-3x-2$ $-s_3-s_2$	$y_{4} - 28$					M1	2.2a
	e.g.	1										
	b.v.	<i>x</i>	<i>y</i>	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>s</i> ₄	<i>a</i> ₁	<i>a</i> ₂	Value		
	<i>s</i> ₁	2	-1	1	0	0	0	0	0	10		
	<i>s</i> ₂	0	1	0	1	0	0	0	0	10	M1	2.1
	a_1	1	0	0	0	-1	0	1	0	4	AI	2.2a
	<i>a</i> ₂	3	2	0	0	0	-1	0	1	24		
	Р	-3	-4	0	0	0	0	0	0	0		
	A	-4	-28									
				(10 n	narks)							
Notes:												
R1. and	for object	otivo fu	nction	(00.0.0	D 2	<u> </u>	$\frac{k}{k}$					
B1: cao B1: cao M1: corr	rect met	hod for	finding	the en	uation	- +y -	ne thro	ugh (0.	12) and	1 (8, 0)		

M1: correct method for finding the equation of the line through (5, 0) and (10, 10)

M1: translate all 4 inequalities into equations – must include all three types of variables (slack, surplus and artificial)

A1ft: two correct equations following their inequalities

A1: all four correct equations

M1: setting up the new objective and substituting for a_1 and a_2

M1: setting up tableau – all six lines with four basic variables

A1: cao (oe e.g. consistent *P* line with their objective equation)

Maximise P = 2x + 2y - z
subject to $3x + y + 2z \leq 30$
 $x - y + z \geq 8$
 $4y + 2z \geq 15$
 $x, y, z \geq 0$

- (a) Explain why the Simplex algorithm cannot be used to solve this linear programming problem.
- (1)

(7)

(b) Set up the initial tableau for solving this linear programming problem using the big-M method.

b.v.	x	y	Z	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> ₃	a_1	<i>a</i> ₂	Value
<i>s</i> ₁	3	0	1.5	1	0	0.25	0	-0.25	26.25
<i>a</i> ₁	1	0	1.5	0	-1	-0.25	1	0.25	11.75
y	0	1	0.5	0	0	-0.25	0	0.25	3.75
P	-(2 + M)	0	2 - 1.5M	0	M	-0.5 + 0.25M	0	0.5 + 0.75M	7.5 – 11.75 <i>M</i>

After a first iteration of the big-M method, the tableau is

(c) State the value of each variable after the first iteration.

(1)

(d) Explain why the solution given by the first iteration is not feasible.

(1)

Taking the most negative entry in the profit row to indicate the pivot column,

(e) obtain the most efficient pivot for a second iteration. You must give reasons for your answer. (2)

(Total for Question 6 is 12 marks)

Qu				Scheme							Marks	AOs
6(a)	Simpl	ex can only	be applied wl	hen the non-	nega	ativit	y co	nstra	ints	are \leq	B1	3.5b
											(1)	
(b)	3x+y	$y + 2z \le 30 =$	$\Rightarrow 3x + y + 2z -$	$+ s_1 = 30$							B1	1.1b
	x-y-	$+z \ge 8 \Longrightarrow x -$		B1	2.5							
	4y+2	$2z \ge 15 \Longrightarrow 4y$	$y + 2z - s_3 + a$	₂ =15							B1	1.1b
	$P = 2$ $a_1 + a_2$	$x + 2y - z \Longrightarrow$ $_{2} = 23 - x - 3$	$P = 2x + 2y$ $By - 3z + s_2 + b$	$-z - M(a_1 + s_3)$	$+a_2)$	tog	ether	wit	h		M1	2.1
	P-(2	(2+M)x-(2	+3M)y-(-	(1+3M)z+d	Ms ₂	+Ms	$s_3 = -$	-23N	1		A1	1.1b
	b.v	X	У	Z.	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	a_1	a_2	Value		
		3	1	2	1	0	0	0	0	30		
	a_1	1	-1	1	0	-1	0	1	0	8	M1	33
		0	1	2	0	0	1	0	1	15	A1	2.2a
		0	4	2	0	0	-1	0	1	15		
	P	-(2+M)	-(2+3M)	-(3M-1)	0	М	М	0	0	-23M		
						1				<u> </u>	(7)	
(c)	$s_1 = 2$	$6.25, a_1 = 11.$.75, y = 3.75, z	$x = z = s_2 = z$	s ₃ =	$a_2 =$	0				B1	3.4
											(1)	
(d)	The so artific	olution after ial variable v	the 1 st iteration which must b	on is not fea e zero in a fe	sible easil	e bec ble so	ause olutio	$a_1 =$	=11.7	5 is an	B1	2.4
											(1)	
(e)	The m a valu	nost negative e from the z-	value in the -column	objective ro	w is	2-1	1.5 <i>M</i>	so	the p	ivot is	B1	2.4
	The 0. and $\frac{1}{2}$	The 0.5 in the y row is the pivot because $\frac{3.75}{0.5}$ is less than both $\frac{26.25}{1.5}$ and $\frac{11.75}{1.5}$										2.2a
				(2)								
											(12 n	harks)

Notes for Question 6

(a)

B1: CAO – e.g. not all of the constraints are \leq , the origin is not a (basic feasible) solution of the LP **(b) B1:** CAO $3x + y + 2z + s_1 = 30$ (may be seen in the simplex tableau – allow any s_i (or s) for s_1) **B1:** CAO $x - y + z - s_2 + a_1 = 8$ (may be seen in the simplex tableau – allow any consistent s_i for s_2 (or t say) but not the same s_i as in the previous mark and allow any a_i for a_1) **B1:** CAO $4y + 2z - s_3 + a_2 = 15$ (may be seen in the simplex tableau – same conditions as above) M1: setting up the new objective which must be $P = 2x + 2y - z - M(a_1 + a_2)$ and substituting for their a_1 and a_2 (if no working then the **correct** objective line in the tableau implies this mark) A1: CAO $P - (2+M)x - (2+3M)y - (-1+3M)z + Ms_2 + Ms_3 = -23M$ (any equivalent form – need not be factorised and does not need to be re-arranged into this form - if no working then the correct objective line in the tableau implies this mark) M1: setting up initial tableau – all four rows complete with two correct rows (but ignore b.v. column for this mark) A1: CAO (any equivalent correct form) (c) **B1:** CAO $s_1 = 26.25, a_1 = 11.75, y = 3.75, x = z = s_2 = s_3 = a_2 = 0$ (ignore expression for *P* if given)

(**d**)

B1: correct reasoning of why the solution is not feasible e.g. a_1 is not zero but B0 for just stating that the artificial variable is non-zero (so must see either a_1 or 11.75 being stated as non-zero)

(e)

B1: correct reasoning of why the pivot comes from a value from the z-column so must say that the most negative value (in the objective row) is 2 - 1.5M (or this expression clearly implied) dB1: correct justification of why the 0.5 in the third row is the next pivot (dependent on previous B mark) – so must compare or state that $\frac{3.75}{0.5}$ or 7.5 is less than both $\frac{26.25}{1.5}$ or 17.5 and $\frac{11.75}{1.5}$ or 7.8(3333...) – just stating that the 0.5 in the third row is the next pivot without reasoning is no marks in this part

7. A maximisation linear programming problem in x, y and z is to be solved using the two-stage simplex method.

Basic variable	x	У	Z	S ₁	S ₂	S ₃	<i>a</i> ₁	<i>a</i> ₂	Value
<i>S</i> ₁	1	2	3	1	0	0	0	0	45
<i>a</i> ₁	3	2	0	0	-1	0	1	0	9
<i>a</i> ₂	-1	0	4	0	0	-1	0	1	4
Р	-2	-1	-3	0	0	0	0	0	0
A									

The partially completed initial tableau is shown below.

- (a) Using the information in the above tableau, formulate the linear programming problem. State the objective and list the constraints as inequalities.
- (b) Complete the bottom row of Table 1 in the answer book. You should make your method and working clear.

(2)

(4)

The following tableau is obtained after two iterations of the first stage of the two-stage simplex method.

Basic variable	x	у	Z	<i>S</i> ₁	S ₂	S ₃	<i>a</i> ₁	<i>a</i> ₂	Value
<i>S</i> ₁	0	$\frac{5}{6}$	0	1	$\frac{7}{12}$	$\frac{3}{4}$	$-\frac{7}{12}$	$-\frac{3}{4}$	$\frac{147}{4}$
x	1	$\frac{2}{3}$	0	0	$-\frac{1}{3}$	0	$\frac{1}{3}$	0	3
Z	0	$\frac{1}{6}$	1	0	$-\frac{1}{12}$	$-\frac{1}{4}$	$\frac{1}{12}$	$\frac{1}{4}$	$\frac{7}{4}$
Р	0	$\frac{5}{6}$	0	0	$-\frac{11}{12}$	$-\frac{3}{4}$	$\frac{11}{12}$	$\frac{3}{4}$	$\frac{45}{4}$
A	0	0	0	0	0	0	1	1	0

- (c) (i) Explain how the above tableau shows that a basic feasible solution has been found for the original linear programming problem.
 - (ii) Write down the basic feasible solution for the second stage.

(3)

(d) Taking the most negative number in the profit row to indicate the pivot column, perform one complete iteration of the second stage of the two-stage simplex method, to obtain a new tableau, *T*. Make your method clear by stating the row operations you use.

(5)

- (e) (i) Explain, using *T*, whether or not an optimal solution to the original linear programming problem has been found.
 - (ii) Write down the value of the objective function.
 - (iii) State the values of the basic variables.

(3)

(Total for Question 7 is 17 marks)

Та	bl	e	1
	~ -	-	-

Basic variable	x	у	Z	S ₁	S ₂	S ₃	<i>a</i> ₁	<i>a</i> ₂	Value
<i>S</i> ₁	1	2	3	1	0	0	0	0	45
a_1	3	2	0	0	-1	0	1	0	9
a ₂	-1	0	4	0	0	-1	0	1	4
Р	-2	-1	-3	0	0	0	0	0	0
A									

7.

19

1

b.v.	x	У	Z	<i>S</i> ₁	S ₂	<i>S</i> ₃	Value	Row Ops
Р								

b.v.	x	у	Z	<i>S</i> ₁	S ₂	S ₃	Value
<i>S</i> ₁	0	$\frac{5}{6}$	0	1	$\frac{7}{12}$	$\frac{3}{4}$	$\frac{147}{4}$
x	1	$\frac{2}{3}$	0	0	$-\frac{1}{3}$	0	3
Z	0	$\frac{1}{6}$	1	0	$-\frac{1}{12}$	$-\frac{1}{4}$	$\frac{7}{4}$
Р	0	$\frac{5}{6}$	0	0	$-\frac{11}{12}$	$-\frac{3}{4}$	$\frac{45}{4}$

Questi on					S	Scher	ne			Marks	AOs
7(a)	Maxir	nise (P =)2	x + y +	3 <i>z</i>					B1	3.4
	x+2y	v + 3z	≤45							B1	3.4
	3x+2	$y \ge 9$								B1	3.4
	-x+4	$4z \ge 4$								B1	1.1b
										(4)	
(b)	A = -	$(a_1 + a_2)$	$a_2) \Rightarrow$	-(9-3	x-2y-	$+s_2 + 4$	4 + x - 4	$(z+s_3)$		M1	2.1
	A-2x	x-2y	-4z + -2	$-s_2 + s_3$ -4	= -13	therefo	ore bott	om row o	of the table is -13	A1	2.2a
										(2)	
(c)(i)	In the indica	e giver ting th	n table nat a b	au the v asic fea	value of sible so	the of the of the of the official states of t	bjective 1 has be	e A is equ en found	al to zero	B1	2.4
(c)(ii)	x=3,	y = 0,	$z = \frac{7}{4}$	$s_1 = \frac{14}{4}$	$\frac{7}{2}, s_2 =$	$s_3 = 0$				B1 B1	3.4
										(3)	
(d)	b.v	x	У	Z.	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	Value	Row Ops		
	<i>s</i> ₂ <i>x</i> <i>z</i>	0 1 0	$\frac{10}{7}$ $\frac{8}{7}$ $\frac{2}{7}$	0 0 1	$ \frac{12}{7} \frac{4}{7} \frac{1}{7} $	1 0 0	$\frac{9}{7}$ $\frac{3}{7}$ $-\frac{1}{7}$	63 24 7	$R1 \div \frac{7}{12}$ $R2 + \frac{1}{3}R1$ $R3 + \frac{1}{12}R1$	M1 A1 M1 A1 A1	2.1 1.1b 1.1b 1.1b 1.1b
	P	0	$\frac{15}{7}$	0	$\frac{11}{7}$	0	$\frac{3}{7}$	69	$R4 + \frac{11}{12}R1$		
	*7			.						(5)	
(e)(i)	Yes, a in the	n opti objec	mal so tive (P	olution) row	has bee	n four	id as the	ere are no	negative values	B1	2.4
(e)(ii)	P = 69)								B1ft	3.4
(e)(iii)	$s_2 = 6$	3, <i>x</i> =	24, z =	= 7						B1ft	3.4
										(3)	
										(17 n	narks)

(a) B1: CAO – including maximise (or max) **B1:** CAO (oe) **B1:** CAO (oe) **B1:** CAO (oe) **(b) M1:** Setting up the new objective and substituting for a_1 and a_2 A1: Correct values substituted into Table 1 (c) **B1:** CAO – mention that A = 0**B1:** At least three values stated correctly **B1:** All six values correct (ignore values stated for a_1, a_2 and P) (**d**) M1: Correct pivot located, attempt to divide row A1: Pivot row correct including change of b.v. M1: All values in one of the non-pivot rows correct or one of the non zero and one columns (y, y) s_1, s_3 or value) correct following through their choice of pivot from column s_2 or s_3 A1: Row operations used correctly at least twice, i.e. two of the non zero and one columns (y, s_1, s_3) or value) correct A1: CAO all values and row operations correctly stated – allow if row operations given in terms of old row 1 – ignore b.v. column for this mark (e)(i) **B1:** Correct reasoning of why solution is optimal or using $P = 69 - \frac{15}{7}y - \frac{11}{7}s_1 - \frac{3}{7}s_3$ and mentioning increasing y, s_1, s_3 would decrease P (oe) (e)(ii) **B1ft:** their value of P – dependent on both M marks in (d) (e)(iii)

B1ft: their values of the basic variables only – dependent on both M marks in (d)

8. Susie is preparing for a triathlon event that is taking place next month. A triathlon involves three activities: swimming, cycling and running.

Susie decides that in her training next week she should

- maximise the total time spent cycling and running
- train for at most 39 hours
- spend at least 40% of her time swimming
- spend a total of at least 28 hours of her time swimming and running

Susie needs to determine how long she should spend next week training for each activity. Let

- *x* represent the number of hours swimming
- *y* represent the number of hours cycling
- *z* represent the number of hours running
- (a) Formulate the information above as a linear programming problem. State the objective and list the constraints as simplified inequalities with integer coefficients.

(5)

Susie decides to solve this linear programming problem by using the two-stage Simplex method.

(b) Set up an initial tableau for solving this problem using the two-stage Simplex method.

As part of your solution you must show how

- the constraints have been made into equations using slack variables, exactly one surplus variable and exactly one artificial variable
- the rows for the two objective functions are formed

(6)

The following tableau T is obtained after one iteration of the second stage of the two-stage Simplex method.

b.v.	x	У	Z	<i>S</i> ₁	s ₂	<i>S</i> ₃	Value
У	0	1	0	1	0	1	11
S ₂	0	0	5	-2	1	-5	62
x	1	0	1	0	0	-1	28
Р	0	0	-1	1	0	1	11

(c) Obtain a suitable pivot for a second iteration. You must give reasons for your answer.

(2)

(d) Starting from tableau *T*, solve the linear programming problem by performing one further iteration of the second stage of the two-stage Simplex method. You should make your method clear by stating the row operations you use.

(5)

(Total for Question 8 is 18 marks)

b.v.	x	y	Z	<i>S</i> ₁	s ₂	<i>S</i> ₃	<i>a</i> ₁	Value
b.v.	<i>x</i>	у	Z	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> ₃	<i>a</i> ₁	Value
b.v.	<i>x</i>	<i>y</i>	Z	<i>S</i> ₁	<i>s</i> ₂	<i>S</i> ₃	<i>a</i> ₁	Value
b.v.	<i>x</i>	<i>y</i>		<i>S</i> ₁	<i>s</i> ₂	<i>S</i> ₃	<i>a</i> ₁	Value

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

0 1 7 2 0 А

Question 8 continued

b.v.	x	y y		<i>s</i> ₁	S_2	S ₃	Value	
у	0	1	0	1	0	1	11	
<i>S</i> ₂	0	0	5	-2	1	-5	62	
x	1	0	1	0	0	-1	28	
Р	0	0	-1	1	0	1	11	
b.v.	x	У	Z	<i>S</i> ₁	<i>S</i> ₂	S ₃	Value	Row Ops
Р								
I				<u> </u>				
pare cop	у							
b.v.	x	у	Z	<i>S</i> ₁	S ₂	S ₃	Value	Row Ops
b.v.	x	у	Z	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	Value	Row Ops
b.v.	x	y	Z	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	Value	Row Ops
b.v.	<i>x</i>	<i>y</i>	Z	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	Value	Row Ops
b.v.	<i>x</i>	<i>y</i>		<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	Value	Row Ops
b.v.	<i>x</i>	<i>y</i>		<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	Value	Row Ops
b.v.	<i>x</i>	<i>y</i>		<i>S</i> ₁	<i>s</i> ₂	<i>S</i> ₃	Value	Row Ops
b.v.	<i>x</i>	<i>y</i>		<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	Value	Row Ops
b.v.	<i>x</i>	<i>y</i>		<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	Value	Row Ops
b.v.	x	<i>y</i>		<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	Value	Row Ops
b.v.	x	<i>y</i>		<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	Value	Row Ops
b.v.	x	<i>y</i>		<i>S</i> ₁	<i>s</i> ₂	<i>S</i> ₃	Value	Row Ops
b.v.	x	<i>y</i>		<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	Value	Row Ops
b.v.	x	<i>y</i>		<i>S</i> ₁	<i>s</i> ₂	<i>S</i> ₃	Value	Row Ops
b.v.	x	<i>y</i>		S ₁		<i>S</i> ₃	Value	Row Ops
b.v.	x	<i>y</i>		<i>S</i> ₁		<i>S</i> ₃	Value	Row Ops

19

Questi on					Sch	neme					Marks	AOs
8 (a)	x + y +	+ <i>z</i> ≤ 39									B1	3.3
	$\frac{2}{-1}(x+$	(y+z):	$\leq x$ (=	$\Rightarrow -3x +$	-2y+2	$z \leq 0$)					M1	3.3
	5	× 20				,					Al	1.1b
	$x + z \ge$	2 28				•					BI	1.10
	Maxin	nise P =	= y + z	$(\Rightarrow P$	-y-z	=0)					B1	3.3
											(5)	
(b)	x + y +	+ <i>z</i> ≤ 39	$\Rightarrow x$	x + y + z	$+s_1 = 3$	89					M1	2.1
	-3x +	2y+2z	$\leq 0 \Rightarrow$	$\rightarrow -3x +$	2y+2z	$z + s_2 = 0$	0				A1	1.1b
	$x+z \ge$	≥28 =	> x+	$z - s_3 +$	$a_1 = 28$						B1	2.5
	I = -c	$a_1 \Rightarrow$	I - x -	$-z + s_3 =$	= -28						M1	2.1
	e.g.											
	1	r	77						XZ-1			
	D.V	л	y	Z.	S_1	<i>s</i> ₂	<i>s</i> ₃	a_1	value			
	<i>s</i> ₁	1	1	1	1	0	0	0	39		M1	3.3
	<i>s</i> ₂	-3	2	2	0	1	0	0	0		A1	2.2a
	a_1	1	0	1	0	0	-1	1	28			
	Р	0	-1	-1	0	0	0	0	0			
	Ι	-1	0	-1	0	0	1	0	-28			
											(6)	
(c)	The or <i>z</i> -colu	nly nega mn	ative in	the obj	ective r	ow is th	ne −1 so	the pi	ivot is fr	om the	B1	2.4
	The 5	in the S	S_2 row	is the pi	ivot bec	cause $\frac{62}{5}$	is less t	han -	28 1		B1	2.2a
											(2)	

(u)	b.v.	x	У	z	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	Value	Row Ops		
	У	0	1	0	1	0	1	11	R1	B1	1.1b
	z	0	0	1	$-\frac{2}{5}$	$\frac{1}{5}$	-1	$\frac{62}{5}$	$\frac{1}{5}$ R2	M1	2.1
	x	1	0	0	$\frac{2}{5}$	$-\frac{1}{5}$	0	$\frac{78}{5}$	R3-R2	A1	1.1b
	Р	0	0	0	$\frac{3}{5}$	$\frac{1}{5}$	0	$\frac{117}{5}$	R4+R2	A1	1.1b
	Spend 15.	6 hou	ırs sw	vimm	ing, 11	hours	cycling	g and 12.4	hours running	A1	3.2a
										(5)	

Notes:

(a)

B1: cao $(x + y + z \le 39)$

M1: $\frac{2}{5}(x+y+z) \square x$ where \square is any inequality or equals

A1: cao

B1: cao ($x + z \ge 28$)

B1: Correct objective function (P = y + z) plus 'maximise' or 'max' but not 'maximum'

(b)

M1: One \leq constraint re-formulated as an equation using slack variables – dependent on either the first **B** mark in (a) or the **M** mark in (a)

A1: cao (both \leq constraints)

B1: \geq constraint re-formulated as an equation using one surplus and one artificial variable

M1: Formulates second objective with $I = -a_1$ and their expression for a_1

M1: Setting up the initial tableau – all five rows complete with two correct rows (but ignore b.v. column for this mark)

A1: cao (any equivalent correct form)

(c)

B1: Correct reasoning that the pivot is a value from the *z*-column – condone any mention of negative value in P row

B1: Correct justification of why the 5 in the s_2 row is the next pivot – so must compare or state that 12.4 is less than 28 (not sufficient to just say that 12.4 (oe) is the least)

(**d**)

B1: Pivot row correct including change of b.v.

M1: All values in one of the non-pivot rows correct or one of the non zero and one columns $(s_1, s_2 \text{ or value})$ correct (from their choice of pivot)

A1: Row operations used correctly at least twice, i.e. **two** of the non zero and one columns (s_1, s_2 or value)

A1: For all values and row operations correctly stated – do not penalise lack of correct b.v. in pivot row twice. Condone blank Row Ops in the first row only

A1: Correct allocation of training times – must be in context (so not just in terms of x, y and z)

4. A linear programming problem in x, y and z is to be solved using the big-M method. The initial tableau is shown below.

b.v.	x	у	Ζ	<i>S</i> ₁	<i>s</i> ₂	<i>S</i> ₃	a_1	<i>a</i> ₂	Value
<i>S</i> ₁	2	3	4	1	0	0	0	0	13
a_1	1	-2	2	0	-1	0	1	0	8
<i>a</i> ₂	3	0	-4	0	0	-1	0	1	12
Р	2 - 4M	-3 + 2M	-1 + 2M	0	М	М	0	0	-20 <i>M</i>

- (a) Using the information in the above tableau, formulate the linear programming problem. You should
 - list each of the constraints as an inequality
 - state the two possible objectives
- (b) Obtain the most efficient pivot for a first iteration of the big-M method. You must give reasons for your answer.

(2)

(4)

(Total for Question 4 is 6 marks)

4.

<i>s</i> ₁	2	3	4	1	0	0	0	0	13
<i>a</i> ₁	1	-2	2	0	-1	0	1	0	8
<i>a</i> ₂	3	0	-4	0	0	-1	0	1	12
Р	2 - 4M	-3 + 2M	-1 + 2M	0	М	М	0	0	-20
			1			1	1		

DO NOT WRITE IN THIS AREA

Question	Scheme	Marks	AOs
4 (a)	Constraints:		
	2x+3y+4z, 13		
	$x-2y+2z\dots 8$	B1	3.4
	$3x - 4z \dots 12$	B1	2.5
	$(x, y, z \dots 0)$		
	Objective functions:		
	Maximise $-2x+3y+z$	M1	3.1a
	Minimise $2x - 3y - z$	Al	2.2a
		(4)	
(b)	(Because <i>M</i> is big) the only negative in the objective row is the $2-4M$ so the pivot is from the <i>x</i> -column	B1	2.4
	The 3 in the a_2 row is the pivot as $\frac{12}{3}$ is less than both $\frac{8}{1}$ and $\frac{13}{2}$	B1	2.2a
		(2)	
	·	(6 n	narks)

Notes for Question 4

a1B1: One correct non-trivial inequality (allow strict inequality provided direction of inequality sign is correct) – equations with slack variables etc. scores no marks unless replaced with correct inequalities

a2B1: All three non-trivial inequalities correct

a1M1: Either expression stated correctly (allow equal to (or an inequality with) any letter e.g.

P = -2x + 3y + z but not equal to a value e.g. = 0) – ignore any mention of maximum/minimum for this mark

a1A1: Both expressions correct including max/min correctly matched with each expression (allow equal to any letter only) – do not isw if they continue and place their expression(s) equal to a value(s)

b1B1: Correct reasoning that the pivot is a value from the *x*-column – as a minimum must state that the 2-4M is the <u>only negative</u> (condone <u>most negative</u>) in the <u>objective row</u> (allow <u>profit row</u> or <u>*P* row</u>, condone '<u>bottom row</u>')

b2B1: Correct justification of why the 3 in the a_2 row or the 3 in the *x* column is the pivot – so **must** state the correct pivot in a clear unambiguous way (so just saying the pivot is 'the 3' is B0) **and** comparing or stating that $\frac{12}{3}$ or 4 is less than/least positive for both $\frac{8}{1}$ or 8 **and** $\frac{13}{2}$ or 6.5 – **must** see all three values so do check the table for possibly stating the θ values there. However, just stating that the 3 is the pivot because it is the smallest θ value (without seeing anywhere these θ values) is B0

Figure 5

Figure 5 shows the constraints of a linear programming problem in x and y where R is the feasible region.

The objective is to maximise P = x + ky, where k is a positive constant.

The optimal vertex of R is to be found using the Simplex algorithm.

(a) Set up an initial tableau for solving this linear programming problem using the Simplex algorithm.

(5)

7.

After two iterations of the Simplex algorithm a possible tableau *T* is Value b.v. x y S_1 S_2 S_3 S_4 $\frac{3}{5}$ $\frac{1}{5}$ 0 0 1 0 1 S_1 $\frac{1}{5}$ $\frac{2}{5}$ 0 0 2 1 0 х 11 12 0 0 0 1 22 S_3 5 5 $\frac{2}{5}$ $\frac{1}{5}$ 0 1 0 0 5 y $\frac{1}{5} + \frac{2}{5}k$ $-\frac{2}{5} + \frac{1}{5}k$ P0 0 0 0 5*k* + 2

(b) State the value of each variable after the second iteration.

(1)

It is given that T does not give an optimal solution to the linear programming problem.

After a third iteration of the Simplex algorithm the resulting tableau does give an optimal solution to the problem.

(c) Perform the third iteration of the Simplex algorithm and hence determine the range of possible values for *P*. You should state the row operations you use and make your method and working clear.

(9)

(Total for Question 7 is 15 marks)

b.v.	x	у			Value
b.v.	x	<i>y</i>			Value
b.v.	x	<i>y</i>			Value
b.v.	x	<i>y</i>			Value
b.v.	x	у у			Value
b.v.	x	<i>y</i>			Value

Question 7 continued

								_
b.v.	x	у	<i>S</i> ₁	<i>s</i> ₂	<i>S</i> ₃	<i>S</i> ₄	Value	
<i>S</i> ₁	0	0	1	$-\frac{3}{5}$	0	$\frac{1}{5}$	1	
x	1	0	0	$\frac{1}{5}$	0	$-\frac{2}{5}$	2	
<i>S</i> ₃	0	0	0	$-\frac{11}{5}$	1	$\frac{12}{5}$	22	
у	0	1	0	$\frac{2}{5}$	0	$\frac{1}{5}$	5	
Р	0	0	0	$\frac{1}{5} + \frac{2}{5}k$	0	$-\frac{2}{5} + \frac{1}{5}k$	5 <i>k</i> + 2	
		·		^		-		
b.v.	x	у	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄	Value	Row Ops
Р								
Spare	сору							
b.v.	x	у	<i>S</i> ₁	<i>s</i> ₂	<i>S</i> ₃	<i>S</i> ₄	Value	Row Ops
P								

DO NOT WRITE IN THIS AREA

Qu	Scheme										Marks	AOs	
7	$x + y,, 8 \Longrightarrow x + y + s_1 = 8$												
(a)	$x+2y,, 12 \Rightarrow x+2y+s_2=12$											M1	3.4
	$7x + 2y, 46 \Longrightarrow 7x + 2y + s_3 = 46$											Al	I.Ib
	$y_{,,} 2x + 1 \Longrightarrow -2x + y + s_4 = 1$												1.1b
	$P = x + ky \Longrightarrow P - x - ky = 0$												
	e.g.												
	b.v. x y s1 s2 s3 s4 Value												
	s ₁ 1 1 1 0 0 8										M1	3.3	
	<u>s2</u> 1 2 0 1 0 0								12				
	<u>s</u> ₃ 7 2				0 0		1		0	46	AI	2.2a	
	S4	<u> </u>			0	0	0		1	1			
	P		-1	- <i>K</i>		0	0	0		0	0		
												(5)	
(b)	$x = 2, y = 5, s_1 = 1, s_2 = 0, s_3 = 22, s_4 = 0 (P = 5k + 2)$											B1	3.4
												(1)	
(c)												B1	1.1b
												M1	21
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												2.1
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											A1	1.1b
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												1 11
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												1.10
	Р	0	0	2-k	<i>k</i> -1	0	0	4k+4 r5 -(0.2k-0.4)		-0.4)R1	B1	2.4	
	Optim	al val	lue of .	P is $4k$	+4 (at .	x = y =	= 4)					M1	3.4
	Second iteration not optimal $\Rightarrow -\frac{2}{5} + \frac{1}{5}k < 0 \therefore k < 2$											B 1	3.1a
	Third iteration optimal $\Rightarrow 2-k \dots 0$ and $k-1\dots 0$ ($\therefore k \dots 1$)											dM1	3.4
	$1,, k < 2 \Longrightarrow 8,, P < 12$												2.2a
	(15 m											narks)	

Notes for Question 7

a1M1: Correctly re-writing any two inequalities as equations with slack variables (can be implied by two correct rows in the Simplex tableau ignoring b.v. column). Or correctly stating all four constraints as inequalities

a1A1: Correctly re-writing all inequalities as equations with slack variables (can be implied by the four correct constraint rows in the Simplex tableau ignoring b.v. column)

a1B1: Correctly re-writes objective function (can be implied by correct row in tableau)

a2M1: Any two rows correct including consistent b.v. column entries **or** any three rows correct (ignoring b.v. column)

a2A1: cao (including consistent b.v. column) – **note that the candidate's order in which the rows appear in the tableau (and choice of letter to represent the slack variable) may be different.** A **correct tableau implies full marks in this part**

b1B1: cao for *x*, *y*, s_1, s_2, s_3 and s_4 only (ignore any mention of *P*)

c1B1: Pivot row completely correct including change of b.v.

c1M1: All **values** in one of the non-pivot rows correct (so ignore b.v. column and 'Row Ops' column) **or** one of the 'non zero and one' columns (which are s_1, s_2 or Value) correct (must have pivoted on the correct value)

c1A1: Row operations used correctly at least twice, i.e. two of the 'non zero and one' columns

 $(s_1, s_2 \text{ or Value})$ correct

c2A1: cao **all** values including b.v. column – ignore 'Row Ops' column for this mark

c2B1: Correct row operations stated

(alternatives row operations are 5r1; r2 + 2r1; r3 - 12r1; r4 - r1; r5 - (k - 2)r1)

c2M1: Their optimal value (as a linear expression in *k*) stated correctly following their third iteration (must have pivoted on a positive value from the s_4 column and completed the bottom row of the tableau). Condone this expression (4k + 4 if correct) being stated as part of an equation/inequality (or as part of their final answer) – sight of this expression (but must be seen **outside** of the tableau) scores this mark

c3B1: Correctly inferring that k < 2 either from $-\frac{2}{5} + \frac{1}{5}k < 0$ or from 4k + 4 > 5k + 2 – just stating

k < 2 without it being clear where this comes from is B0

c3dM1: Considering (at least) two of their linear expressions in k from their objective row (not including the Value column) after the third iteration ...0 (**dependent on the previous M mark**) – note that working may be minimal here so please follow through their expressions in k from their objective row (so **if** correct, stating k, 2 and k...1 implies this mark)

c3A1: cao for the range of values for P - this mark is dependent on a correct objective row in the tableau and the previous three marks in this part